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Chapter 1

Introduction

In this diploma thesis we present the Brill-Noether algorithm and show how it can be used for
effective construction of geometric Goppa codes and for the absolute factorization of bivariate
polynomials.

Let C be a projective plane curve defined over a field K and having only ordinary singular
points. The classical Brill-Noether algorithm gives a construction of a basis of the vector space
L(D) associated to a divisor D of the function field K(C) of the curve C where K denotes an
algebraic closure of K. A generalization of the classical Brill-Noether algorithm to projective
plane curves having non-ordinary singularities is presented in [BR88]. In the frame work of code
theory this generalization gives a construction of “good” codes associated with curves having many
rational points over a given finite field. G. Haché’s presentation of the algorithms in a strictly
algebraic manner using the theory of algebraic function fields in [Hac96] (preceding papers [BH95]
and [Hac95]) permits an easy translation of the theory into any computer algebra language. It is
easy to compute the genus of any singular plane curve C, to find a basis of L(D), where D is a
divisor of the function field K(C), and to evaluate functions at any place P of degree one. We need
all this for the construction of a geometric Goppa code. All the algorithms have been implemented
by G. Haché in AXIOM. The Brill-Noether algorithm is polynomial in the degree of the curve and
the degree of the divisor. This complexity has been proved in [Lau97].

In the second part we show that the Brill-Noether algorithm is also valid for non-irreducible pro-
jective plane curves. We generalize the concepts defined for algebraic function fields to a structure
that is isomorphic to the direct product of function fields of the irreducible components. It is the
ring of global functions defined on the non-irreducible curve. We can now apply the Brill-Noether
algorithm for the absolute factorization of bivariate polynomials using the geometric approach pro-
posed in [Duv91]. The Brill-Noether algorithm has been adapted to the non-irreducible case in
[LB89]. However, in [Hac98] it has been shown that the Brill-Noether algorithm is also valid for
non-irreducible curves without any modifications. This results in a better complexity.

Some new proofs concerning the Brill-Noether algorithm are presented in this diploma thesis.
All the necessary algorithms for the construction of geometric Goppa codes and the absolute fac-
torization have been implemented by the author in MuPAD. An implementation in MAGMA is
planned.

1



2 CHAPTER 1. INTRODUCTION



Chapter 2

Algebraic Function Fields

In this chapter we first review the basic definitions and results of the theory of algebraic function
fields: valuations, places, divisors, the genus of a function field and the Riemann-Roch theorem.
Then we describe briefly the construction of geometric Goppa codes. For a thorough treatment of
algebraic function fields and codes we refer the reader to [Sti93].

Throughout the whole report, K denotes a perfect field.

2.1 Places

Definition 2.1 An algebraic function field F/K of one variable over K is an extension field F ⊃ K
such that F is a finite algebraic extension of K(x) for some element x ∈ F which is transcendental
over K.

For brevity, we simply refer to F/K as a function field. The set K
c := {z ∈ F | z is algebraic over K}

is a subfield of F , since sums, products and inverses of algebraic elements are also algebraic. K
c is

called the field of constants of F/K. We have K ⊆ K
c ⊂ F , and it is easily verified that F/K

c is
a function field over K

c. We say that K is algebraically closed in F (or K is the full constant field
of F ) if K = K

c.

Remark 2.1 The elements of F which are transcendental over K can be characterized as follows:
z ∈ F is transcendental over K if and only if [F : K(z)] < ∞.

Proposition 2.1 Let F/K be a function field where K is a perfect1 field. Then there exist x, y ∈ F
such that F = K(x, y).

Proof: [Sti93], Proposition III.9.2 2

Let us recall that a non-constant polynomial C ∈ K[X, Y ] is called absolutely irreducible if it is
irreducible in K[X, Y ] where K is an algebraic closure of K.

Proposition 2.2 Let F/K be a function field and K
c be the field of constants of F/K. Let x, y ∈ F

such that F = K(x, y) and C(X, Y ) ∈ K[X, Y ] be an irreducible polynomial such that C(x, y) = 0.
Then

K = K
c ⇐⇒ C is absolutely irreducible.

1A field is called perfect if all its algebraic extensions are separable. For example, fields of characteristic 0, all
finite fields and all algebraically closed fields are perfect

3



4 CHAPTER 2. ALGEBRAIC FUNCTION FIELDS

Proof: [Sti93] Corollary III.6.7 2

Definition 2.2 A valuation ring of the function field F/K is a ring O ⊂ F with the following
properties:

1. K ( O ( F ,

2. for any z ∈ F , z ∈ O or z−1 ∈ O.

Proposition 2.3 Let O be a valuation ring of F/K. Then

1. O is a local ring, i.e. O has a unique maximal ideal P = O \ O∗, where O∗ is the group of
units of O.

2. For 0 6= x ∈ F , x ∈ P ⇐⇒ x−1 /∈ O.

3. For the field of constants of F/K we have K
c ⊆ O and K

c ∩P = {0}.

Proof: [Sti93], I.1.5. Proposition 2

Definition 2.3 A place of the function field F/K is the maximal ideal of some valuation ring O
of F/K. We denote the set of all places of F/K by PF .

If O is a valuation ring of F/K and P its maximal ideal, then O is uniquely determined by P (the
preceding proposition), namely O = {z ∈ F | z−1 /∈ P}. Hence OP := O is called the valuation
ring of the place P.

Theorem 2.4 Let O be a valuation ring of the function field F/K and P the unique maximal ideal
of O. Then

1. P is a principal ideal.

2. If P = tOP then any element z ∈ F \ {0} has a unique representation z = tnu for some
element n ∈ Z and u ∈ O∗

P. The number n does not depend on the choice of t.

Proof: [Sti93] Theorem I.1.6 2

A ring having the above properties is called a discrete valuation ring.

Definition 2.4 Let P be a place of the function field F/K. Any element t ∈ P such that P = tOP

is called a local parameter (or a uniformizing variable).

A second useful description of places is given in terms of valuations.

Definition 2.5 A discrete valuation of F/K is a function ν : F → Z ∪ {∞} with the following
properties:

1. ν(x) = ∞⇐⇒ x = 0.

2. ν(xy) = ν(x) + ν(y) for any x, y ∈ F .

3. ν(x + y) ≥ min{ν(x), ν(y)} for any x, y ∈ F .

4. There exists an element z ∈ F with ν(z) = 1.
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5. ν(a) = 0 for any 0 6= a ∈ K.

A stronger version of the inequality 3 of the Definition 2.5 can be derived from the axioms and is
often very useful:

Lemma 2.5 (Strict Triangle Inequality) Let ν be a discrete valuation of F/K and x, y ∈ F
with ν(x) 6= ν(y). Then ν(x + y) = min{ν(x), ν(y)}.

Proof: [Sti93], I.1.10. Lemma 2

Definition 2.6 To any place P ∈ PF we associate a function νP : F → Z ∪ {∞} that turn out
to be a discrete valuation of F/K: Choose a local parameter t of P. Then every 0 6= z ∈ F has a
unique representation z = tnu with u ∈ O∗

P and n ∈ Z. Define νP(z) := n and νP(0) := ∞.

Theorem 2.6 Let F/K be a function field.

1. For any place P ∈ PF , the function νP defined above is a discrete valuation of F/K. More-
over, we have

OP = {z ∈ F | νP(z) ≥ 0},
O∗

P = {z ∈ F | νP(z) = 0},
P = {z ∈ F | νP(z) > 0}.

An element z ∈ F is a local parameter for P if and only if νP(z) = 1.

2. Conversely, suppose that ν is a discrete valuation of F/K. Then the set P := {z ∈ F | ν(z) >
0} is a place of F/K, and OP = {z ∈ F | ν(z) ≥ 0} is the corresponding valuation ring.

3. Any valuation ring O of F/K is a maximal proper subring of F .

Proof: [Sti93], I.1.12 Theorem 2

According to this theorem places, valuation rings and discrete valuations of a function field essen-
tially amount to the same thing.
Let P be a place of F/K and OP its valuation ring. Since P is a maximal ideal, the residue class
ring OP/P is a field. For x ∈ OP we define x(P) ∈ OP/P to be the residue class of x modulo
P, for x ∈ F \ OP we put x(P ) := ∞ (note that the symbol ∞ is used here in a different sense
as in Definition 2.5). By Proposition 2.3 we know that K ⊂ OP and K ∩P = {0}, so the residue
map OP → OP/P induces a canonical embedding of K into OP/P. Henceforth we shall always
consider K as a subfield of OP/P via this embedding. Observe that this argument also applies to
K

c instead of K; so we can consider K
c as a subfield of OP/P as well.

Definition 2.7 Let P ∈ PF .

1. FP := OP/P is the residue class field of P. The map x 7→ x(P) from F to FP ∪ {∞} is
called the residue class map with respect to P. Sometimes we shall also use the notation
x + P := x(P) for x ∈ OP.

2. deg P := [FP : P] is called the degree of P.

The degree of a place is always finite; more precisely, the following holds.
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Proposition 2.7 If P is a place of F/K and 0 6= x ∈ P then

deg P ≤ [F : K(x)] ≤ ∞.

Proof: [Sti93], I.1.14 Proposition 2

Since K
c is a subfield of FP, we have the following Corollary.

Corollary 2.8 Let K
c be the constant field of F/K. Then

[Kc : K] < ∞.

Remark 2.2 For the case when deg P = 1 we have FP = K, and the residue class map maps F
to K ∪{∞}. In particular, if K is an algebraically closed field, any place has degree one, so we can
interpret an element z ∈ F as a function

z :
{

PF → K ∪ {∞}
P 7→ z(P)

.

This is why F/K is called a function field. The elements of K, interpreted as functions in this
sense are constant functions. For this reason K is called the constant field of F . Also, the following
terminology is justified.

Definition 2.8 Let z ∈ F \ {0} and P ∈ PF . We say that P is a zero of z if νP(z) > 0; P is a
pole of z if νP(z) < 0.

Proposition 2.9 Let F/K be a function field. Let R be a ring such that K ( R ( F and I a
proper ideal of R. Then there exits a place P ∈ PF such that R ⊆ OP and I ⊆ P. Moreover, if I
is a prime ideal then I = P ∩R.

Proof: [Sti93], Theorem I.1.18. and [Che51], Remark 2 on page 8 2

Corollary 2.10 Let F/K be a function field and z ∈ F transcendental over K. Then z has at
least a zero and a pole.

Proof: To find a zero of z, we apply the preceding proposition to the ring K[z] ⊂ F and to the
ideal I := zK[z]. To find a pole, we use the same argument with z−1. 2

Remark 2.3 Let F/K be a function field and z ∈ F \ {0}. Then

z ∈ K
c \ {0} ⇐⇒ z has neither a zero nor a pole.

The implication (⇒) follows from the fact that K
c∩P = {0} for any place P ∈ PF and the converse

is true since by the corollary 2.10 z /∈ K
c implies that z is transcendental over K. 2

Proposition 2.11 In a function field F/K any element z ∈ F \ {0} has only finitely many zeros
and places.

Proof: [Sti93], I.3.4 Corollary 2
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2.2 Divisors

The field K
c of constants of a function field F/K is a finite extension field of K, and F can be

regarded as a function field over K
c. Moreover, since any valuation ring O of F/K contains the

field K
c of constants, the set of all valuation rings of F/K

c is the same as the set of all valuation
rings of F/K.

From here on, F/K will always denote an algebraic function field of one variable such
that K is the full constant field of F/K.

Definition 2.9 The (additively written) free abelian group which is generated by the places of F/K
is denoted by DF , the divisor group of F/K. The elements of DF are called divisors of F/K. In
other words, a divisor is a formal sum

D =
∑

P∈PF

nPP

with nP ∈ Z, almost all nP = 0.

The support of D is defined by

suppD := {P ∈ PF | nP 6= 0}.

Two divisors D =
∑

P∈PF
nPP and D′ =

∑
P∈PF

n′PP are added coefficientwise:

D + D′ :=
∑

P∈PF

(nP + n′P)P.

We define νP(D) := nP. A partial ordering on DF is defined by

D1 ≤ D2 :⇐⇒ νP(D1) ≤ νP(D2) for any P ∈ PF .

A divisor D ≥ 0 is called positive (or effective). The degree of a divisor is defined by

deg D :=
∑

P∈PF

νP(D) · deg P

and yields a group homomorphism deg : DF → Z. By proposition 2.11, any nonzero element x ∈ F
has only finitely many zeros and poles in PF . Thus the following definition makes sense.

Definition 2.10 Let 0 6= x ∈ F and denote by Z (resp. N ) the set of zeros (poles) of x in PF .
Then we define

(x)0 :=
∑

P∈Z νP(x)P, the zero divisor of x,

(x)∞ :=
∑

P∈N −νP(x)P, the pole divisor of x, and
(x) := (x)0 − (x)∞, the principal divisor of x.

The elements 0 6= x ∈ F which are constants are characterized by

x ∈ K ⇐⇒ (x) = 0.

This follows immediately from remark 2.3 (note the general assumption made previously that
K = K

c).
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Definition 2.11
PF := {(x) | 0 6= x ∈ F}

is called the group of principal divisors of F/K. This is a subgroup, since for x, y ∈ F \ {0},
(xy) = (x) + (y).

Two divisors are D,D′ ∈ DF are called equivalent, denoted by D ≡ D′, if D −D′ ∈ PF .
Roughly speaking, the next proposition states that an element 0 6= x ∈ F has many zeros as

poles, provided the zeros and poles are counted properly.

Proposition 2.12 Let x ∈ F \K. Then

deg(x)0 = deg(x)∞ = [F : K(x)].

Proof: [Sti93], Theorem I.4.11 2

2.3 The vector space L(D)

Our next definition plays a fundamental role in the theory of algebraic function fields.

Definition 2.12 For a divisor D ∈ DF we set

L(D) = {z ∈ F \ {0} | (z) ≥ −D} ∪ {0}.

The elements of L(D) may have poles only at the places of the support of D; more precisely, if
x ∈ L(D) and P is a pole of x, then P ∈ suppD and νP(x) ≥ −νP(D). Moreover, x has at most
deg D zeros outside of suppD.

Lemma 2.13 Let D ∈ DF . Then L(D) is a vector space over K.

Proof: [Sti93], I.4.6 Lemma 2

Proposition 2.14 Let D ∈ DF . Then the dimension dimK L(D) of the vector space L(D) is finite.
We will denote dim D := dimK L(D).

Proof: [Sti93], I.4.9 Proposition 2

Proposition 2.15 There exists a constant γ ∈ Z such that, for all divisors D ∈ DF , the following
holds:

deg D − dim D ≤ γ.

Proof: [Sti93] I.4.14. Proposition 2

Therefore the following definition makes sense.

Definition 2.13 The genus of F/K is defined by

g := max{deg D − dim D + 1 | D ∈ DF }.

The genus is the most important invariant of a function field.

Remark 2.4 The genus of F/K is a non-negative integer.
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Proof: In the definition of g, put D = 0. Then deg(0)− dim(0) + 1 = 0, hence g ≥ 0. 2

Theorem 2.16 (Riemann) Let F/K be a function field of genus g.

1. For any divisor D ∈ DF ,
dim D ≥ deg +1− g.

2. There is an integer c, depending on F/K, such that

dim D = deg D + 1− g

whenever deg D ≥ c.

Proof: [Sti93], I.4.17 Theorem 2

The Riemann-Roch Theorem

Theorem 2.17 Let W be a canonical divisor of F/K. Then, for any D ∈ DF ,

dim D = deg D + 1− g + dim(W −D).

Proof: [Sti93], I.5.15 Theorem 2

Corollary 2.18 For a canonical divisor W , we have

deg W = 2g − 2 and dim W = g.

Proof: [Sti93], I.5.16 Corollary 2

Theorem 2.19 If D is a divisor of F/K of degree ≥ 2g − 1 then

dim D = deg D + 1− g.

Proof: [Sti93], I.5.17 Corollary 2

Corollary 2.20 Let P ∈ PF . Then there exists u ∈ F such that P is the unique zero (pole) of u.

Proof: By the preceding theorem we know that there exists an integer n such that dim(nP) ≥ 2
and consequently there exists v ∈ L(nP) such that v /∈ K. Now P is the unique place of v by the
definition of L(nP). It is obvious that P is the unique pole of v−1. 2

2.4 Geometric Goppa Codes

In this section, we describe Goppa’s construction of error-correcting codes using algebraic function
fields. Let us fix some notation valid for the entire section.

• F/Fq is an algebraic function field of genus g over the finite field Fq with q elements,

• P1, . . . ,Pn are pairwise distinct places of F/Fq of degree 1,

• P = P1 + . . . + Pn,



10 CHAPTER 2. ALGEBRAIC FUNCTION FIELDS

• D is a divisor of F/Fq such that suppD ∩ suppP = ∅.

Definition 2.14 The geometric Goppa code CL(P, D) associated with the divisors P and D is
defined by

CL(P, D) := {(x(P1), . . . , x(Pn)) | x ∈ L(D)} ⊆ Fn
q .

Note that this definition makes sense: for x ∈ L(D), we have νPi(x) ≥ 0 (i = 1, . . . , n) because
suppP ∩ suppD = ∅. The residue class x(Pi) of x modulo Pi is an element of the residue class field
of Pi. As deg Pi = 1, this residue field is Fq, so x(Pi) ∈ Fq.

The geometric Goppa code CL(P, D) is the image of L(D) under the evaluation map

evP :
{
L(D) → Fn

q

x 7→ (x(P1), . . . , x(Pn))

which is Fq-linear.

Proposition 2.21 The geometric Goppa code CL(P, D) is a [n, k, d] code with parameters

k = dim D − dim(D − P)

and
d ≥ n− deg D.

Especially if 2g − 1 ≤ deg D < n, then

k = deg D − g + 1.

Proof: Since the mapping evP is a Fq-linear we have

k := dimFq evP(L(D)) = dimFq(L(D))− dimFq ker evP .

We have evP(z) = 0 if and only if z ∈ L(D − P). Therefore k = dim D − dim(D − P). Let now
u ∈ L(D). By the definition of L(D) u has at most deg D zero outside the support of D. It is
now clear that there exist at most n − deg D places of the support of D which are zeros of u.
Consequently the weight w := w(evP(u)) of the code word evP(u) is such that w ≥ n − deg D.
This shows that d ≥ n − deg D. Let now 2g − 1 ≤ deg D < n. Since deg D < n = degP we have
L(D − P) = {0} and therefore k = dim D = deg D − g + 1 by the Riemann-Roch theorem since
deg D ≥ 2g − 1. 2

Construction of Goppa-Codes

If {x1, x2, . . . , xl} is a basis of L(D) then the matrix

G :=


x1(P1) x1(P2) . . . x1(Pl)
x2(P1) x2(P2) . . . x2(Pl)

...
...

. . .
...

xn(P1) xn(P2) . . . xn(Pl)


is a generator matrix for the geometric Goppa code CL(P, D). It is now obvious what we need to
construct geometric Goppa codes for a given algebraic function field F/Fq :
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1. Find the places of degree 1 and construct the divisor P,

2. Construct a divisor D such that suppD and suppP are disjoint,

3. Compute a basis B := {x1, x2, . . . , xl} of the vector space L(D),

4. Evaluate the functions xi ∈ B at every place of the support of P.
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Chapter 3

Algebraic curves

In this chapter we describe briefly some elementary objects which arise in the study of algebraic
geometry and present some basic facts about algebraic curves. We will see that the function field
K(C) of a curve C is a an algebraic function field of one variable. This fact permits us to use several
concepts of algebraic geometry to get more information about our algebraic function field of one
variable.

3.1 Affine curves

Definition 3.1 Affine n-space over K is the set of n-tuples

An = An(K) = {P = (a1, . . . , an) | a1, . . . , an ∈ K}.

Similarly, the set of K-rational points in An is the set

An(K) = {P = (a1, . . . , an) ∈ An | a1, . . . , an ∈ K}.

Notice that the Galois group GK/K acts on An; for σ ∈ GK/K and P ∈ An,

P σ = (aσ
1 , . . . , aσ

n).

Then An(K) may be characterized by

An(K) = {P ∈ An | P σ = P for all σ ∈ GK/K}.

Let K[X] = K[X1, . . . , Xn] be the polynomial ring in n variables, and let I ⊂ K[X] be an ideal.
To each such ideal I we associate a subset of An,

V(I) = {P ∈ An | G(P ) = 0 for all G ∈ I}.

Definition 3.2 An (affine) algebraic set is any set of the form V(I). If V ⊂ An is an algebraic
set then the ideal of V is given by

I(V ) = {F ∈ K[X] | F (P ) = 0 for all P ∈ V }.

13
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An algebraic set V is set defined over K if its ideal I(V ) can be generated by polynomials in K[X].
We denote this by V/K. If V is defined over K, the set of K-rational points of V is the set

V (K) = V ∩ An(K).

Remark 3.1 Note that by the Hilbert basis theorem, all ideals in K[X] and K[X] are finitely
generated (i.e. the rings K[X] and K[X] are noetherian).

Let V be an algebraic set, and consider the ideal

I(V/K) = {G ∈ K[X] | G(P ) = 0 for all P ∈ V } = I(V ) ∩K[X].

Then we see that V is defined over K if and only if

I(V ) = I(V/K)K[X].

Let V be an algebraic set and σ ∈ GK/K . Consider the ideal

I(V )σ := {Gσ | G ∈ I(V )}.

It is obvious that

V is defined over K ⇐⇒ I(V ) = I(V )σ for all σ ∈ GK/K .

Definition 3.3 An affine algebraic set V is called an affine variety if I(V ) is a prime ideal in
K[X]. Note that if V is defined over K, it is not enough to check that I(V/K) is prime.

Definition 3.4 Let V be an affine variety. The coordinate ring of V is defined by

K[V ] := K[X]/I(V ).

If V is defined over K, the coordinate ring of V/K is defined by

K[V ] := K[X]/I(V/K).

Remark 3.2 The coordinate ring of a variety V can be interpreted as a set of functions with values
in K which are defined at all points of V . Let f ∈ K[C] and F ∈ K[X] such that f = F + I(V ) ∈
K[V ]. We call f(P ) := F (P ) the evaluation of f at the point P . It is clear that the definition of
the evaluation does not depend on choice of the representative F .

Since the ideal I(V ) of a variety V is a prime ideal the coordinate ring K[V ] integer and we can
construct the quotient field Quot(K[V ]) of K[V ].

Definition 3.5 Let V be an affine variety. The function field of V , denoted by K(V ), is the
quotient field Quot(K[C]). If V is defined over K, the function field of V/K, denoted by K(V ), is
the quotient field Quot(K[V ]).

Definition 3.6 Let V ⊆ Am and W ⊆ An be two varieties. We say V and W are birationally
isomorphic if their function fields K(V ) and K(W ) are K-isomorphic.
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Remark 3.3 Let V/K be an affine variety. It is clear that K[V ] and K(V ) can be embedded
canonically in, respectively, K[V ] and K(V ). Therefore we will always consider K[V ] as a subring
of K[V ] and K(V ) as a subfield of K(V ).

Since V is defined over K, the Galois group GK/K takes I(V ) into itself (by acting on the
coefficients of the polynomials of the ideal) and we can extend the action of GK/K to K[V ] and
K(V ). One can check easily that K[V ] and K(V ) are, respectively, the subsets of K[V ] and K(V )
fixed by GK/K .

Definition 3.7 Let V be an affine variety and P ∈ V . The local ring of the point P is the ring

OP (V ) := {f/g ∈ K(V ) | f, g ∈ K[V ], g(P ) 6= 0}.

Let u ∈ OP (V ) and f, g ∈ K[V ] such that u = f/g where g(P ) 6= 0. We call u(P ) := f(P )/g(P )
the evaluation of u at the point P .

Remark 3.4 We can consider OP (V ) as the set of all functions which are defined at the point
P . Let MP be the maximal ideal corresponding to the point P ∈ A2. Then I(V ) ⊆ MP and
MP := MP + I(V ) is a maximal ideal of the coordinate ring K[V ]. We have

OP (V ) := {f/g | f, g ∈ K[V ], g /∈ MP }.

The ring OP (V ) is the localization K[V ]MP
of K[V ] at the maximal ideal MP and has the unique

maximal ideal

MP (V ) := {f, g ∈ K(V ) | f, g ∈ K[V ], f ∈ MP , g /∈ MP }
= {f, g ∈ K(V ) | f, g ∈ K[V ], f(P ) = 0, g(P ) 6= 0}

The function field K(V ) of a variety is an extension field of finite type (i.e. there exist x1, . . . , xn ∈
K(V ) such that K(V ) = K(x1, . . . , xn)). Especially the transcendence degree of K(V ) over K is
finite.

Definition 3.8 Let V be a variety. The dimension of the variety V , denoted by dim(V ), is the
transcendence degree of K(V ) over K.

Definition 3.9 An affine curve C ⊂ An is an affine variety of dimension 1.

Definition 3.10 Let C ∈ K[X, Y ] be an absolutely irreducible polynomial and consider the variety

C := {C = 0} = {P ∈ A2 | C(P ) = 0}.

It is clear that the function field K(C) is of transcendence degree one over K. The variety C is
therefore a curve and since it is contained in the affine plane A2, we say that it is an affine plane
curve. Since C ∈ K[X, Y ] the curve C is defined over K.

In studying any geometric object, one is naturally interested in knowing whether it looks reasonably
“smooth”. The next definition formalizes this notion in terms of the usual Jacobian criterion for
the existence of a tangent plane.
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Definition 3.11 Let V be a variety, P ∈ V , and G1, . . . , Gm ∈ K[X] a set of generators for I(V ).
Then V is non-singular (or smooth) at P if the m× n matrix

(∂Gi/∂Xj(P ))1≤i≤m,1≤j≤n

has rank n − dim(V ). If V is non-singular at every point, we say that V is non-singular (or
smooth).

For an affine plane curve the situation is much simpler.

Proposition 3.1 Let C := {C = 0} be an affine plane curve. Let CX and CY denote the derivatives
with respect to X and Y . Then

P = (a, b) ∈ C is simple ⇐⇒ CX(a, b) 6= 0 or CY (a, b) 6= 0.

We want to establish a correspondence between points of an affine plane curve C := {C = 0}
and places of its function field K(C). To do this we study local rings of points. One of the most
important properties of a point of C ⊂ A2 is its multiplicity. Let P := (0, 0) ∈ A2. We can write

C = Cm1 + Cm2 + . . . + Cmd

where m1 < m2 < . . . < md and Cmi is a homogeneous polynomial of degree mi for i = 1, 2, . . . , d.
We call Cm1 the initial form of C and denote it by Init(C). The multiplicity of the point P = (0, 0)
of C, denoted by mP (C), is the degree of the initial form, m(0,0)(C) := deg Init(C). If P = (a, b),
the multiplicity of the point P of C is defined by mP (C) := m(0,0)(C(X + a, Y + b)). It is clear
that C(P ) = 0 if and only if mP (C) > 0.

Recall that every homogeneous polynomial of K[X, Y ] factors in linear forms. If P = (0, 0) and
mP (C) > 0 then we have

Init(C) =
mP (C)∏

i=1

(αiX + βiY ).

Geometrically speaking, the distinct factors Lj = αjX + βjY of Init(C) define tangents in at the
affine plane curve C at the point P .

Definition 3.12 Let C := {C = 0} be an affine plane curve and P ∈ C. We call mP (C) := mP (C)
the multiplicity of the point P .

Theorem 3.2 Let C := {C = 0} be an affine plane curve and P ∈ C. The point P is a simple
point of C if and only if OP (C) is a discrete valuation ring. In this case, if T = αX +βY +γ is any
line through P which is not tangent to C at P then the image t of T in OP (C) is a local parameter
of OP (C∗).

Proof: [Ful69] Theorem 1 on page 70 2

Let C := {C = 0} be an affine plane curve and P := (a, b) ∈ C. Let CX and CY denote the
derivatives of C with respect to X and Y . We have

mP (C) = 1 ⇐⇒ CX(a, b) 6= 0 or CY (a, b) 6= 0.

The right side of this equivalence corresponds to the definition of a simple point of an affine plane
curve. The following proposition summarizes the equivalent conditions for a simple point.
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Proposition 3.3 Let C := {C = 0} be an affine plane curve and P := (a, b) ∈ C. Then the
following assertions are equivalent

1. P is simple.

2. CX(a, b) 6= 0 or CY (a, b) 6= 0.

3. mP (C) = 1.

4. OP (C) is a discrete valuation ring.

Proposition 3.4 The multiplicity of a point P ∈ C depends uniquely on the local ring OP (C).
Indeed, it can be show that there exists a sufficiently large N such that for all n ≥ N

mP (C) = dimK MP (C)n/MP (C)n+1

where MP (C) is the maximal ideal of OP (C).

Proof: [Per95] Proposition 4.6 on page 113 or [Ful69] Theorem 2 on page 71. 2

3.2 Projective plane curves

On the set A3 \ {(0, 0, 0)}, an equivalence relation ≡ is given by

(a0, a1, a2) ≡ (b0, b1, b2) if there exists 0 6= λ ∈ K such that ai = λbi for i = 0, 1, 2.

The equivalence class of (a1, a2, a3) with respect to the equivalence relation ≡ is denoted by (a1 :
a2 : a3). The projective plane P2 is the set of equivalence classes

P2 := {(a1 : a2 : a3) | ai ∈ K, not all ai = 0}.

An element P = (a1 : a2 : a3) ∈ P2 is called a point, and a0, a1, a2 are called its homogeneous
coordinates. We say a point P = (a : b : c) is at infinity if a2 = 0. If V ⊂ P2 we denote by V∞ the
set V∞ := {(a : b : c) ∈ V | c = 0}. For i = 0, 1, 2 we set

Ui := {(a0 : a1 : a2) ∈ P2 | ai 6= 0}.

We call the sets Ui the standard open sets of P2. For i = 0, 1, 2 we have the bijective maps

πi :


A2 → Ui

(a, b) 7→


(1 : a : b) if i = 0,
(a : 1 : b) if i = 1,
(a : b : 1) if i = 2.

The plane P2 is covered by the standard open sets U0, U1 and U2. They are canonically isomorphic
to A2.

The elements of K[U, V, W ] can not be considered as functions defined on the projective plane
P2 since every point of P2 can be represented by infinitely many homogeneous polynomials. For
d ∈ N we set

Sd := {G ∈ K[U, V,W ] | G is a homogeneous polynomial of degree d}.

If G ∈ Sd we say that P = (a : b : c) ∈ P2 is a zero of G, denoted by G(P ) = 0, if G(a, b, c) = 0.
Since G is homogeneous we have G(λa, λb, λc) = λdG(a, b, c) for all λ ∈ K \ {0} and it is now clear
that the definition does not depend on the coordinates of P .
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Definition 3.13 A projective plane curve C∗ ⊂ P2 is the zero set of a homogeneous irreducible
polynomial C∗ ∈ K[U, V,W ]. If C∗ ∈ K[U, V,W ], we say the curve C∗ is defined over K and we
write C∗/K.

Let C∗ ∈ K[U, V,W ] be a homogeneous irreducible polynomial. Let I(C) := 〈C∗〉. The coordinate
ring of C∗ is the ring

K[C∗] := K[U, V,W ]/I(C∗).

If C∗ is defined over K, the coordinate ring of C∗/K is the ring

K[C∗] := K[U, V,W ]/I(C∗/K).

Definition 3.14 Let C∗ := {C∗ = 0} be a projective plane curve. We say g ∈ K[C∗]\{0} is a form
of degree d if there exists a homogeneous polynomial G ∈ S of degree d such that g = G+ 〈C∗〉. We
define deg g := d and write g(P ) 6= 0 if P ∈ C∗ such that G(P ) 6= 0. The same definitions apply to
K[C∗] if C∗ is defined over K.

The degree of a form is well-defined: if G′ and G are two non-zero homogeneous polynomials of
different degrees such that G − G′ ∈ 〈C∗〉 then G ∈ 〈C∗〉 and G′ ∈ 〈C∗〉 since otherwise the
polynomial C∗ would not be homogeneous.

We can not consider the elements of K[C∗] as functions defined on C∗ since the value would
depend on the representation of the equivalence class. On the contrary, let d ∈ N and G, H ∈ Sd.
Let P = (a : b : c) ∈ C∗ and suppose that H(P ) 6= 0. Then for all λ ∈ K \ {0} we have

G(λa, λb, λc)
H(λa, λb, λc)

=
λdG(a, b, c)
λdH(a, b, c)

=
G(a, b, c)
H(a, b, c)

.

and the map G/H → (G/H)(P ) := G(a,b,c)
H(a,b,c) is well-defined.

Definition 3.15 Let C∗ be a projective curve. The function field K(C∗) of the curve C∗ is the
subfield of the quotient field of K[C∗] given by

K(C∗) := {f/g | f, g ∈ K[C∗] are forms of the same degree and g 6= 0}.

If C∗ is defined over K, the the function field K(C∗) of C∗/K is the field

K(C∗) := {f/g | f, g ∈ K[C∗] are forms of the same degree and g 6= 0}.

We say u ∈ K(C) is defined at the point P ∈ C∗ if there exist two forms f and g of the same degree
such that u = f/g and g(P ) 6= 0. If G, H ∈ Sd are such that g = G + 〈C∗〉 and h = H + 〈C∗〉 we
evaluate u at the point P by setting u(P ) := (G/H)(P ).

Definition 3.16 Let C∗ be a plane projective curve and P ∈ C∗. The local ring of the point P is
defined by

OP (C∗) := {f/g | f, g ∈ K[C∗] are forms of the same degree and g(P ) 6= 0}.

The local ring OP (C∗) of a point P is the set of all functions defined at the point P . It is clear that
OP (C∗) is a local ring and that its unique maximal ideal is

MP (C∗) = {f/g ∈ OP (C∗) | f(P ) = 0}.
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Definition 3.17 Let C and C′ be two plane curves (affine or projective). We say that C is birational
to C′ if their function fields are K-isomorphic.

We show that any projective plane curve is birational to some affine plane curve. Let C∗ := {C∗ = 0}
be a projective plane curve and suppose that C∗ 6= W . Set C := C∗(X, Y, 1). The corresponding
curve is

C := π−1
2 (C∗) = {Q ∈ A2 | C(Q) = 0}.

The irreducibility of C follows from the irreducibility of C∗. Therefore C is an affine plane curve.
Moreover, C∗ is birational to C. It is easy to show that

ϕ2 :

{
K(C∗) → K(C)
G(u,v,w)
H(u,v,w) 7→ G(x,y,1)

H(x,y,1)

is a K-isomorphism where u,v and w denote the residual images of, respectively, U ,V and W in
K[C∗] and where x and y denote the residual images of, respectively, X and Y in K[C]. Similarly we
define the K-isomorphisms ϕi and conclude that Ci := π−1

i (C∗) is an affine plane curve birational
to C∗.

Conversely, let C := {C = 0} be an affine plane curve defined by the polynomial

C =
d∑

l=0

∑
l=i+j

αi,jX
iY j ∈ K[X, Y ].

We set

C∗ :=
d∑

l=0

∑
l=i+j

αi,jU
iV jW (d−l) ∈ K[U, V,W ]

and
C∗ := {C∗ = 0}.

Since C(X, Y ) = C∗(X, Y, 1) it is clear that C∗ is irreducible. We show now the isomorphism. Let
f/g ∈ K(C) and F,G ∈ K[X, Y ] with f = F + 〈C〉 and g = G + 〈C〉. Then{

K(C) −→ K(C∗)
f/g 7→ wdeg G−deg F F ∗(u, v, w)/G∗(u, v, w)

is the desired isomorphism. The projective plane curve C∗ is called the projective closure of the
affine plane of C. For the relation between a curve and its projective closure see [Kun85] Lemma
2.12 on page 70.

Remark 3.5 Let C∗ be a projective plane curve. For i = 0, 1, 2 we have shown that Ci := π−1
i (C∗)

is an affine plane curve which is birationally isomorphic to C∗. Note that there is a bijective
correspondence between Ci and C∗∩Ui. Moreover, if P ∈ C∗∩Ui and Pi ∈ Ci is such that π(Pi) = P
then

ϕi(OP (C∗)) = OPi(Ci).

The local rings OP (C∗) and OPi(Ci) are isomorphic. Thus questions about a projective plane curve
C∗ near a point P can be reduced to questions about the affine plane curve C.

We observe that Γ2 := (u/w, v/w) is a coordinate pair of the function field K(C∗) since
ϕ2(u/w) = x and ϕ2(v/w) = y and K(x, y) = K(C) ∼= K(C∗). Similarly, we verify that Γ1 :=
(u/v, w/v) and Γ0 := (v/u, w/u) are coordinate pairs of K(C∗). We call the coordinate pairs Γi for
i = 0, 1, 2 the standard coordinates pairs of the function field K(C∗).
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Since the function field of an affine plane curve is an algebraic function field in one variable we have
the following proposition.

Proposition 3.5 The function field of a projective plane curve is an algebraic function field in one
variable.



Chapter 4

Brill-Noether algorithm

The aim of this chapter is to present the Brill-Noether algorithm which computes a basis of the
vector space L(D) associated to the divisor D of the function field of a plane curve.

Since K is a perfect field, there always exist x, y ∈ F such that F = K(x, y). Let C ∈ K[X, Y ]
be the irreducible polynomial such that C(x, y) = 0. Since K is the full constant field of F , the
polynomial C is absolutely irreducible. Let F be the composition field F := KF where K is an
algebraic closure of K. Let C/K be the affine curve C := {C = 0} which is defined over K. It
is clear that the function field K(C) of C is isomorphic to the algebraic function field F and the
function field K(C) of C/K is isomorphic to the algebraic function field F . We see that an algebraic
function field is always isomorphic to the function field of an affine plane curve. Given the function
field of a curve C ⊂ An with n ≥ 3 it is not always easy to find a coordinate pair of this field.
We will not treat this problem here. Our algebraic function field F will always be the function
field of a projective plane curve defined over K. In this case we know the standard coordinate
pairs. Much of the work of this section can be viewed as methods for finding new coordinate pairs
from some already known coordinate pair (blowing up points). The defining polynomials of the
new coordinate pair determine affine plane curves with function fields isomorphic to F . The new
coordinate pairs will give us new information on our function field F .

From both an algebraic and algorithmic point of view it will be very useful to identify
the algebraic function field F with all function fields K(C) of affine plane curves C which
are K-isomorphic to F (F ∼= K(C)). This will permit us to compare local rings of points
of different curves. We will need this when we blow up singular points.

The Brill-Noether algorithm is only defined when the field K is algebraically closed. But, as we
will see in section 4.8.1, “Constant field extensions”, it is always possible to associate to a divisor
D of the function field K(C) a divisor D of the function field K(C) such that

1. dimK L(D) = dimK L(D),

2. there exists a basis of L(D) consisting of elements of K(C), and

3. any basis of L(D) consisting of elements of K(C) is a basis of L(D).

Thus to compute a basis of L(D) we apply the Brill-Noether algorithm to the divisor D and gurantee
that the basis consists of elements of K(C).

21
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4.1 Points versus places

Definition 4.1 (Coordinate pair of F ) A pair Γ := (x, y) ⊂ F such that F = K(x, y) is called
a coordinate pair of F . The irreducible polynomial CΓ ∈ K[X, Y ] such that CΓ(x, y) = 0 is called
the defining polynomial of F with respect to Γ. We associate to the coordinate pair Γ the affine
plane curve

CΓ := {(a, b) ∈ A2 | CΓ(a, b) = 0}.

We say that Γ is defined over K, denoted by Γ/K, if and only if CΓ ∈ K[X, Y ] and F = K(x, y).

Let C := {C = 0} be an affine plane curve such that K(C) ∼= F . There exist infinitely many
isomorphisms from K(C) to F . On the contrary, by choosing a coordinate pair Γ := (x, y) of F/K
such that C = CΓ, we fix the isomorphism

ϕΓ :

{
K(C) → F
F (X,Y )

G(X,Y )
7→ F (x,y)

G(x,y)

which maps X and Y (the residual images of X and Y in the coordinate ring K[C]) to, respectively,
x and y. If Γ is defined over K then we can restrict ϕΓ to the field K(C) and obtain the isomorphism
ϕΓ/K : K(C) → F .

As we have seen we can associate to a coordinate pair Γ := (x, y) of F/K the affine plane curve
CΓ and obtain thereby the isomorphism ϕΓ : K(CΓ) → F . This permits us to carry over all concepts
of curves to the algebraic function field F .

Remark 4.1 Let Γ := (x, y) be a coordinate pair and C := CΓ the associated curve. Let P := (a, b)
be a point of C and OP (C) be the local ring of P . Since

OP (C) := K[X,Y ]〈X−a,Y−b〉,

it is clear that
ϕΓ(OP (C)) = K[x, y]〈x−a,y−b〉.

We introduce now the notion of points of function fields.

Definition 4.2 (Point of the function field F/K) A point of F/K is a pair P := (a, b;x, y)
where Γ = (x, y) is a coordinate pair of F/K and (a, b) is a point of the curve CΓ associated to Γ.
The localization of K[x, y] at the maximal ideal 〈x− a, y − b〉

OP = K[x, y]〈x−a,y−b〉

is called the local ring of P . Its maximal ideal is denoted by MP . It is generated by x − a and
y − b. We call the set

Z(Γ) := {(a, b;x, y) | (a, b) ∈ CΓ}

the point set of F/K determined by the coordinate pair Γ.

Let Γ = (x, y) be a pair of coordinates of F/K and P = (a, b;x, y) ∈ Z(Γ). The point P inherits all
definitions and all local properties of the point (a, b) of the curve CΓ via the isomorphism ϕΓ. For
example, the point P is simple if and only if (a, b) ∈ CΓ is simple and the multiplicity of P , denoted
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by mP , is the multiplicity m(a,b)(CΓ) of (a, b) ∈ CΓ. If u ∈ OP then there exist F,G ∈ K[X, Y ] such
that u = F (x, y)/G(x, y) and G(a, b) 6= 0. We call u(P ) := F (a, b)/G(a, b) the evaluation of u at
P . It is clear that this definition does not depend on the choice of the polynomials F and G.

Two distinct points P1 := (a1, b1;x, y) and P2 := (a2, b2;x, y) of Z(Γ) yield distinct local rings
as they correspond to two different points (a1, b1) and (a2, b2) of the curve CΓ. The definition of a
point of F/K permits us to compare points corresponding to two points of different curves. Now
if (x1, y1) and (x2, y2) are different coordinate pairs of F/K then there may exist two different
points P1 := (a1, b1;x1, y1) ∈ Z((x1, y1)) and P2 := (a2, b2;x2, y2) ∈ Z((x2, y2)) of F/K such that
OP1 = OP2 . Therefore we define the following equivalence relation.

Definition 4.3 (Equivalent points) Let P1 and P2 be two points of F/K. We say that P1 and
P2 are equivalent, denoted by P1 ≡ P2, if OP1 = OP2.

Remark 4.2 (Affine transformations) Let Γ := (x, y) be a coordinate pair of F/K with the
defining polynomial C. For any α, β ∈ K we have K[x, y] = K[x−α, y−β]. Therefore (x−α, y−β) is
a coordinate pair of F/K with the defining polynomial C(X+α, Y +β). If P = (a, b;x, y) ∈ Z((x, y))
then P ′ = (0, 0;x−α, y−β) ∈ Z((x−α, y−β)) and P is equivalent to P ′. We obtain the point P ′

by translation of the point P to the origin.
Let α1, β1, α2, β2 ∈ K with γ := α1β2 − β1α2 6= 0. We obtain a new coordinate pair (x1, y1) of

F/K by setting

x1 := α1x + β1y,

y1 := α2x + β2y

The defining polynomial of (x1, y1) is C(γβ2X − γβ1Y,−γα2 + α1β2Y ).

Let A and B be local rings with the maximal ideals, respectively,MA andMB. We say B dominates
A if B ⊇ A and MB ⊇MA.

Definition 4.4 (Above relation) Let P and Q be two points of F/K. We say Q is above P ,
denoted by Q | P , if OQ dominates OP . If P is a place of F/K we say P is above the point P ,
denoted by P | P , if OP dominates OP . We say P is a representative of the place P, denoted by
P ≡ P, if OP = OP.

The relation Q | P defines a partial order on the set of points of F/K. The simple points of F/K
are the maximal elements for this order since their local rings are discrete valuation rings which
are maximal proper subrings of F .

Let P be a point F/K and P a place above P . We will see in section 4.2, “Blowing-up points”,
how to compute a chain of points P = Q0, Q1, Q2, . . . , Qn such that Qi+1 | Qi for i = 1, . . . , n− 1
and Qn ≡ P.

Lemma 4.1 Let P := (a, b;x, y) be a point of F/K and P ∈ PF such that P | P . Suppose that
νP(x− a) ≤ νP(y − b). Then

νP(x− a) = min{νP(z) | z ∈MP }.

Proof: Let z ∈ MP . There exist g, h ∈ OP such that z = (x − a)g + (y − b)h. We have
z/(x−a) = g+h(y−b)/(x−a) and z/(x−a) ∈ OP since νP(x−a) ≤ νP(y−b) and g, h ∈ OP ⊆ OP.
Hence νP(x− a) ≤ νP(z) for all z ∈MP . 2
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Proposition 4.2 (Local parameter of a place) Let P = (a, b;x, y) be a simple point. Then
x− a or y − b is a local parameter of the place P ≡ P .

Proof: This follows from the preceding lemma and from the fact that t is a local parameter of P if
and only if νP(t) = 1. 2

Proposition 4.3 Let P := (a, b;x, y) be a point of the function field F/K. Let Q be a point of
F/K and Q a place of F/K. Then the following assertions are equivalent:

1. Q | P Q | P
2. OP ⊆ OQ OP ⊆ OQ
3. MP ⊆MQ MP ⊆ Q
4. x− a ∈MQ and y − b ∈MQ x− a ∈ Q and y − b ∈ Q

Proof: We show the proposition for the point Q of F/K (the proof for a place is similar). By
definition we have (1) ⇔ ((2) and (3)). We show (2) ⇒ (3) ⇒ (4) ⇒ (2).

• (2) ⇒ (3) Suppose that OP ⊆ OQ and consider the injection OP ↪→ OQ followed by the
canonical projection OQ → OQ/MQ

∼= K

ϕ : OP ↪→ OQ → OQ/MQ
∼= K.

The kernel of ϕ must be a maximal ideal as the image of ϕ is a field. Since OP is a local ring,
we have ker ϕ = MP . We must have MP ⊆MQ. Otherwise ϕ would not be surjective.

• (3) ⇒ (4) This is trivial since MP = 〈x− a, y − b〉OP .

• (4) ⇒ (2) Let u ∈ OP . Since OP is the localization of K[x, y] in the maximal ideal MP =
〈x− a, y − b〉, there exist g, h ∈ K[x, y] such that u = g/h with h /∈ MP . By assumption
x − a, y − b ∈ MQ. We have therefore K[x, y] ⊆ OQ and MP ⊆ MQ. Consequently
MP = K[x, y] ∩ MQ and we have g, h ∈ OQ with h /∈ MQ. Therefore h−1 ∈ MQ so
that u = gh−1 ∈ OQ.

2

Corollary 4.4 A place P ∈ PF can not be above two distinct points P1 = (a1, b1;x, y) and P2 =
(a2, b2;x, y) of Z(Γ) for a fixed coordinate pair Γ = (x, y) of F/K.

Proof: Assume that P is above P1 and P2. Then by the preceding lemma x − a1, x − a2, y − b1,
y− b2 ∈ P and consequently a1− a2 or b1− b2 is a non-zero constant contained in P contradicting
the fact that P ∩K = {0}. 2

Corollary 4.5 Let P be a point of the function field F/K. Then at least one place and at most
finitely many places P ∈ PF are above P .

Proof: By proposition 2.9 we know that there exists at least one place P above P . Now there can
not be infinitely many places above P since by the preceding proposition every place above the
point P = (a, b;x, y) is a zero of x− a and y− b. We know by proposition 2.11 that any element of
F \ {0} has only finitely many zeros, and consequently x− a and y− b can have only finitely many
common zeros. 2
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Corollary 4.6 (Point set Z(Γ) of F/K) Let Γ = (x, y) be coordinate pair of F/K. Then

Z(Γ) = {(x(P), y(P);x, y) | P ∈ PF such that x ∈ OP and y ∈ OP}.

Proof: (⊆) : Let P = (a, b;x, y) ∈ Z(Γ), OP its local ring and P ∈ PF such that P | P . Since
MP ⊆ P, we have x− a ∈ P and y − b ∈ P and therefore (a, b) = (x(P), y(P)).
(⊇) : Let C be the defining polynomial of Γ and P ∈ PF such that x, y ∈ OP. We have

C(x(P), y(P)) = C(x, y)(P) = 0(P) = 0

and therefore (x(P), y(P);x, y) ∈ Z(Γ). 2

Remark 4.3 For a fixed coordinate pair Γ = (x, y) of F/K there exist at least one place and at
most finitely many places of F/K which do not dominate any point of Z(Γ). These places are
exactly the places which are poles of x or y. We will have to work with projective plane curves to
avoid this “imbalance” between points and places.

4.2 Blowing-up points

Let P be a point of the function field F/K and P ∈ PF a place above P . If P is a simple point
then OP = OP. If P is a singular point then OP ( OP. We may now ask if there exists a point
Q of F/K such that Q ≡ P and if this is the case how this point can be determined. These two
questions are closely related to the desingularization problem which consists of finding a smooth
curve birationally isomorphic to a given singular curve. The classical method for solving this
problem uses the technique of “blowing-up points”.

Let Γ := (x, y) be a coordinate pair of F/K an C an affine plane curve such that C = CΓ. A
point P = (a, b;x, y) ∈ Z(Γ) represents a place of F/K if and only if P is a simple point. The point
P corresponds to the simple point (a, b) of the curve C. A place P ∈ PF can not be represented
by a point Z(Γ) if and only P is above a singular point of Z(Γ). We will change the coordinates
(x, y) in order to find a representation of such a place as a point of F/K.

Let C ∈ K[X, Y ] be the defining polynomial of the coordinate pair (x, y). Set x1 := x/y and
y1 := y/x. Then both (x1, y) and (x, y1) are coordinate pair of F/K since x ∈ K(x1, y) and
y ∈ K(x, y1). The process of passing from (x, y) to (x, y1) (resp. (x1, y)) is called the monoidal
transformation with respect to the exceptional coordinate x (resp. y). Let G ∈ K[X, Y ] and
m := deg Init(G). Then m is the biggest integer such that Xm divides G(X, XY ) ∈ K[X, Y ] and
Y m divides G(XY, Y ) ∈ K[X, Y ]. We set

G[x] := G(X, XY )/Xm ∈ K[X, Y ]

which we call the strict transform of G with respect to the exceptional coordinate x. Similarly, we
set

G[y] := G(XY, X)/Xm ∈ K[X, Y ]

which we call the strict transform of G with respect to the exceptional coordinate y.

Lemma 4.7 Let Γ := (x, y) be a coordinate pair of F/K with the defining polynomial C ∈ K[X, Y ].
Then C [x] (resp. C [y]) is the defining polynomial of the coordinate pair (x, y1) (resp. (x1, y)).
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Proof: It is clear that C [x](x, y1) = 0. It suffices to show that C [x] is irreducible to conclude the
proof. We write

C(X, Y ) = Cm(X, Y ) + Cm+1(X, Y ) + . . . + Cn(X, Y )

where m := deg Init(C), n := deg C and Ci is a homogeneous polynomial of degree i for m ≤ i ≤ n.
It is now easily seen that

C [x](X, Y1) = Cm(1, Y1) + XCm+1(1, Y1) + . . . + Xn−mCn(X, Y1).

We have C(X, Y ) = Xm C [x](X, Y/X) and it is clear that C [x] must be irreducible. Otherwise C
would not irreducible. 2

Assume that P = (0, 0;x, y) is a point of the function field F/K and P ∈ PF a place above P .

1. If y1 := y/x ∈ OP then
Q := (0, y1(P);x, y1)

is a point of F/K (by corollary 4.6) such that P | Q and Q | P (by proposition 4.3).

2. Similarly, if x1 := x/y ∈ OP then

Q′ := (x1(P), 0;x1, y1)

is a point of F/K such that P | Q′ and Q′ | P .

It is easily verified that if x1 ∈ OP and y1 ∈ OP, then Q and Q′ are above each other and therefore
Q ≡ Q′.

Definition 4.5 Let P := (a, b;x, y) be a point of F/K and P ∈ PF a place above the point P . Set
x0 := x− a and y0 := y − b.

1. If y1 := y0/x0 ∈ OP, then we set

PP := (0, β, x0, y1)

where β := y1(P). We call x0 the exceptional coordinate of the point PP.

2. Otherwise, we have x1 := x0/y0 ∈ P and we set

PP := (0, 0, x1, y0).

We call y0 the exceptional coordinate of the point PP.

We set PP(0)
:= P and PP(n)

:=
(
PP(n−1)

)P
for n ≥ 1. The point PP(n)

is called the infinitely
close point of order n towards the place P. We call blow up of the point P the set

B(P ) := {PP | P ∈ PF such that P | P}.

We note that by Corollary 4.5 the blow up of a point is a finite set.

Remark 4.4 Let P := (a, b;x, y) be a point of F/K and P ∈ PF above P . We note that if we
apply the preceding definition to the point P0 := (0, 0;x− a, y − b), then we have PP

0 = PP.
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We determine now the coordinates of points of B(P ) as a function of the coordinates of P . Suppose
that P = (0, 0;x, y) and let C(X, Y ) ∈ K[X, Y ] be the defining polynomial of the coordinate pair
(x, y). Let Init(C) be the initial form of C and m := mP > 0 the degree of Init(C). Consider its
factorization

Init(C) =
m∏

i=1

(αiX + βiY ).

Let (x, y1) (resp. (x1, y)) be the monoidal transform of (x, y) with respect to the exceptional
coordinate x (resp. y) which have C [x] (resp. C [y]) as defining polynomials. Let H := C − Init(C).
Then l := deg Init(H) > m and we can write

C [x] =
m∏

i=1

(αi + βiY ) + X(l−m)H [x]

and

C [y] =
m∏

i=1

(αiX + βi) + Y (l−m)H [y].

Now let P ∈ PF be a place above P (recall that in this case x, y ∈ P by proposition 4.3). By the
definition of a valuation ring we have y1 = y/x ∈ OP or x1 = x/y ∈ OP.

1. If y1 ∈ OP, then

0 = 0(P) = C [x](x, y1)(P) =
m∏

i=1

(αi + βiy1(P)) = Init(C)(1, y1(P))

and consequently there exists i such that βi 6= 0 and y1(P) = −αi/βi. Therefore

PP := (0,−αi/βi;x, y1).

2. If y1 /∈ OP, then x1 ∈ P and x1(P) = 0. We have

0 = 0(P) = C [y](x1, y)(P) =
m∏

i=1

(αix1(P) + βi) =
m∏

i=1

βi

and consequently there exists i such that βi = 0. Therefore

PP := (0, 0;x1, y).

Note that the values −αi/βi are the distinct roots of Init(C)(1, Y ). There exists i such that βi = 0
if and only if Init(C)(0, 1) = 0 which is equivalent to say that X does not divides Init(C). More
precisely, we have

B(P ) := {(0, γ;x, y1) | γ ∈ K, Init(C)(1, γ) = 0} ∪B∞(P )

where

B∞(P ) =
{
{(0, 0;x1, y)} if Init(C)(0, 1) = 0

∅ otherwise
.
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Remark 4.5 Let P = (0, 0;x, y) and CΓ be the affine plane curve associated to the coordinate
pair Γ := (x, y). Note that the points of B(P ) correspond bijectively to the distinct linear factors
of Init(C) and consequently to the tangents of the curve CΓ in the point (0, 0). More precisely,
Q := (0, γ;x, y1) ∈ B(P ) if and only if the line γX − Y = 0 is a tangent of the curve CΓ in the
point (0, 0). Similarly, Q′ = (0, 0;x1, y) ∈ B(P ) if and only if X = 0 is a tangent of the curve CΓ

in the point (0, 0). We construct the points of B(P ) by splitting (“blowing up”) the singular point
(0, 0) in several new points corresponding to the tangents of the curve CΓ in (0, 0).

Definition 4.6 Let P be a point of F/K. We say (x, y) is an exceptional coordinate pair of the
blow up B(P ) if

1. P ≡ (0, 0;x, y), and

2. x/y ∈ OP and y/x ∈ OP for all places P ∈ PF above P .

Lemma 4.8 Every blow up B(P ) of a point P of F/K has a exceptional coordinate pair.

Proof: We assume without loss of generality that P = (0, 0;x, y). Set x′ := x+αy and y′ := x+βy
where α, β ∈ K \ {0}. It is clear that if α 6= β, then Γ′ := (x′, y′) is also a coordinate pair of F/K
and P ≡ (0, 0;x′, y′). Choose now α and β such that X + αY and X + βY does not divide Init(C)
and therefore x′/y′ ∈ OP and y′/x′ ∈ OP for all places P | P . 2

Lemma 4.9 Let P := (0, 0;x, y) be a point of F/K and P ∈ PF a place above P . If x is the
exceptional coordinate of PP, then

1. νP(x) = min{νP(z) | z ∈MP },

2. z/x ∈ OP P for all z ∈MP .

Proof: The assertion (1) follows directly from lemma 4.1 since νP(x) ≤ νP(y). The proof of (2) is
similar to the proof of lemma 4.1 (replace OP by OP P and use y/x ∈ OP P). 2

The definition of an infinitely close point towards a place depends on the coordinates of the point.
On the contrary, the following proposition shows that the local ring of an infinitely close point
towards a place only depends on the local ring of the point P and the place P.

Proposition 4.10 Let P and R be two equivalent points of F/K and P ∈ PF a place above them.
For all n ∈ N we have

PP(n) ≡ RP(n)
.

Proof: It suffices to show the proposition for an infinitely close point of order 1. Suppose that
P := (0, 0;x, y) and R := (0, 0;u, v) (see remark 4.4) and νP(x) ≤ νP(y) and νP(u) ≤ νP(v) (toggle
(x, y) and (u, v) if necessary). By the preceding lemma we have x/u, y/u ∈ ORP . Since MP = MR,
we have νP(x) = νP(u) by lemma 4.1 and consequently νP(x/u) = 0. Therefore x/u ∈ ORP is
invertible in ORP . We have now y/x = (y/u)(u/x) ∈ ORP . The ring ORP contains x and y/x and
consequently RP | PP by proposition 4.3. 2

Proposition 4.11 Let Γ = (x, y) be a coordinate pair of F/K with the defining polynomial C ∈
K[X, Y ] such that X does not divide Init(C). Then the element y1 := y/x satisfies an algebraic
equation of degree m over K[x, y] where the leading coefficient is not zero in P = (0, 0;x, y). We
have therefore xm−1 (OP [y1]) ⊆ OP .
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Proof: [Per95] Lemma 4.5 on page 191 2

Proposition 4.12 Let P := (0, 0;x, y) be a point F/K and suppose that X does not divide Init(C)
where C is the defining polynomial of the coordinate pair (x, y). Then OP [y1] is a semi-local ring
and its maximal ideals correspond bijectively to the points of B(P ).

Proof: Let M be a maximal ideal of OP [y1]. By Proposition 2.9 we know that there is a place P

of F such that M = P ∩ OP [y1]. Since by Corollary 4.5. 2

Proposition 4.13 Let P := (0, 0;x, y) be a point F/K and suppose that y/x ∈ OP for all places
P ∈ PF above the point P . Then

OP [y1] =
⋂

Q∈B(P )

OQ

and therefore

xmP−1

 ⋂
Q∈B(P )

OQ

 ⊆ OP

Proof: Since the ring OP [y1] is integer it is equal to the intersection of all its localizations in its
maximal ideals (see [Mat80] lemma 2 on page 8). These localizations are exactly the local rings
OQ. 2

4.3 Exceptional divisors

We define the exceptional divisor of a point of F/K. This divisor plays an important role in the
computation of a basis of the vector space L(D) where D ∈ DF . We deduce from the definition of
the exceptional divisor and its properties a method for the computation of principal divisors.

Definition 4.7 (Local divisor) Let P be a point of F/K and z ∈ F \ {0}. The local divisor of
z at the point P , denoted by (z)P , is defined by

(z)P :=
∑
P|P

νP(z)P. (4.1)

Is is clear that (z1z2)P = (z1)P + (z2)P for all z1, z2 ∈ F \ {0} and all points P of F/K.

Definition 4.8 (Exceptional divisor) Let P be a point of F/K. The exceptional divisor of the
point P , denoted by EP , is defined by

EP :=
∑
P|P

mPP (4.2)

where mP is defined by
mP := min{νP(z) | z ∈MP }.

for all places P above P .

Lemma 4.14 Let (x, y) be a pair of exceptional coordinates of B(P ). Then

(x)P = (y)P = EP .
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Proof: By proposition 4.1 we have νP(x) or νP(y) is min{νP(z) | z ∈ MP } and νP(x) = νP(y)
(since x/y ∈ OP and y/x ∈ OP by the definition of an exceptional coordinate pair) for all places
P with P | P . 2

Remark 4.6 If P is a simple point, then EP = P where P is the unique place such that P ≡ P .
The converse is also true as we will see in 4.21.

Suppose that P := (0, 0;x, y) is a singular point of F/K and let g ∈ K[x, y]. Since any place above
P is above only one point of B(P ) (see Corollary 4.4) we have

(g)P =
∑

Q∈B(P )

(g)Q.

Let G ∈ K[X, Y ] such that g = G(x, y). Let lQ denote the exceptional coordinate of Q ∈ B(P ) and
set x1 := x/y, y1 := y/x and

g(lQ) :=
{

G[x](x, y1) if lQ = x

G[y](x1, y) if lQ = y
.

We have

(g)P =
∑

Q∈B(P )

(lmP (G)
Q g(lQ))Q

= mP (G)
∑

Q∈B(P )

(lQ)Q +
∑

Q∈B(P )

(g(lQ))Q.

Since lQ is an exceptional coordinate of the point Q ∈ B(P ), we have

νP(lQ) = min{νP(z) | z ∈MP }

for all places P above the point Q. Consequently

EP :=
∑

Q∈B(P )

(lQ)Q

and
(g)P = mP (G)EP +

∑
Q∈B(P )

(g(lQ))Q.

Proposition 4.15 Let P := (a, b;x, y) be a point of F/K and C the defining polynomial of (x, y).
Let g ∈ K[x, y] \ {0} and G ∈ K[X, Y ] such that g = G(x, y). If the initial form of G(X + a, Y + b)
does not have a common factor with the initial form of C(X + a, Y + b) then

(g)P = mP (G)EP .

Proof: Let x0 := x− a and y0 := y − b and Q ∈ B(P ). We assume without loss of generality that
Q = (0, β;x0, y0/x0). It is clear that G[x](0, β) 6= 0 and therefore g[x] ∈ O∗

Q ⊆ O∗
P (equivalent to

νP(g[x]) = 0) for all P | Q. 2
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4.4 Intersection divisors

Let now K(C∗) and K(C∗) denote, respectively, the function field of a projective plane
curve C∗ := {C∗ = 0} defined over K.

Let K[C∗] denote the coordinate ring of the curve C∗ and u, v and w the residual images of,
respectively, U , V and W in K[C∗]. We call Γ := (u, v, w) the homogeneous coordinate triple.
The standard coordinate pairs Γ2 := (u/w, v/w), Γ1 := (u/v, w/v) and Γ0 := (v/u, w/u) are
coordinate pairs of K(C∗) defined over K. The corresponding defining polynomials are, respectively,
C∗(X, Y, 1), C∗(X, 1, Y ) and C∗(1, X, Y ).

Let P = (a : b : c) ∈ C∗. By the definition of homogeneous coordinates there exists at least
one coordinate that is not zero. Suppose that c 6= 0. Then P∗2 = (a/c, b/c;u/w, v/w) is a point of
F/K. If b 6= 0 then P∗1 = (a/b, c/b;u/v, w/v) is also a point of K(C∗) and P∗2 ≡ P∗1. Therefore
all points of C∗ can be identified with points of point of K(C∗). This corresponds to the fact that
questions about a projective plane curve C∗ near a point P can be reduced to questions about the
affine plane curve C. Even though OP∗2 and OP∗1 are equal some computations depend on the
choice of the non-zero coordinate. We fix the following convention:

Definition 4.9 (Points of K(C∗)) We associate to every point P := (a : b : c) ∈ C∗ a point of
K(C∗) defined by:

P∗ :=


(a/c, b/c;u/w, v/w) if c 6= 0

(a/b, 0;u/v, w/v) if c = 0 and b 6= 0
(0, 0; v/u, w/u) if P = (1 : 0 : 0)

.

For every homogeneous polynomial F ∈ K[U, V,W ] we set

F
P :=


F (u, v, w)/wdeg G if c 6= 0
F (u, v, w)/vdeg G if c = 0 and b 6= 0
F (u, v, w)/udeg G if P = (1 : 0 : 0)

.

We have F
P ∈ K(C∗) for all P ∈ C∗ and all homogeneous polynomial F ∈ K[U, V,W ]. If z =

F (u, v, w)/G(u, v, w) ∈ K(C∗) for some homogeneous polynomials F,G ∈ K[U, V,W ] then z =
F

P
/G

P for all P ∈ C∗.

Proposition 4.16 Let C∗ be a projective plane curve.

1. If P ∈ PK(C∗), then there exists a unique point P ∈ C∗ such that P | P∗.

2. If P ∈ C∗, then {P ∈ PK(C∗) | P | P∗} is a non-empty finite set.

Proof: We show that at least one of the standard coordinate pairs is contained in OP. Assume that
u/w /∈ OP. By the definition of a valuation ring we have w/u ∈ OP. Assume now that v/u /∈ OP

and we have u/v ∈ OP. Consequently (w/u)(u/v) = w/v ∈ OP. The coordinate pair (u/v,w/v) is
contained in OP. We can now use corollary 4.6. The other cases are treated similarly. The second
assertion is equivalent to corollary 4.5. 2

Definition 4.10 (Local divisor) Let z ∈ K(C∗) and P ∈ C∗. The local divisor of z in the point
P , denoted by (z)P , is defined by (z)P := (z)P∗.
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Definition 4.11 (Intersection divisor) Let P ∈ C∗ and F ∈ K[U, V,W ]\{0} such that C∗ does
not divide F . The local intersection divisor of F in P , denoted by (F )P , is defined by

(F )P := (FP )P .

The intersection divisor of F and C∗, denoted by (F ), is defined by

(F ) :=
∑

P∈C∗
(F )P .

If F (P ) 6= 0 then F
P is invertible in OP∗ ⊆ OP for all places P | P . Therefore the divisor (F ) is

well-defined because by the Bézout theorem there exists only a finite number of points P ∈ C∗ such
that F (P ) = 0 (the intersection points of the curves C∗ and F = {F = 0}). It is also clear that
(F )P does not depend on the choice of the non-zero homogeneous coordinate in the definition 4.9.

The following proposition shows that we can always write the principal divisor of a function as
a difference of two intersection divisors. We conclude from this that two homogeneous polynomials
of equal degree have intersection divisors of equal degree.

Proposition 4.17 (Principal divisors) Let z ∈ K(C∗) \ {0} and F,G ∈ K[U, V,W ] two homo-
geneous polynomials non-divisible by C∗ such that deg F = deg G and

z =
F (u, v, w)
G(u, v, w)

.

Then
(z) = (F )− (G).

Proof: Let P ∈ PK(C). Recall that F (u, v, w)/G(u, v, w) = F
P
/G

P for all P ∈ C∗. We have

νP(z) = νP(F (u, v, w)/G(u, v, w))

= νP(FP
/G

P )

= νP(FP )− νP(GP ),

and
(z)P :=

∑
P|P

νP(z)P = (F )P − (G)P .

The proposition follows now from the fact that a place P ∈ PF dominates a unique point of C∗. 2

Definition 4.12 (Transverse) Let H ∈ K[U, V,W ] be a homogeneous polynomial and P := (a :
b : c) ∈ P2. We define

HP (X, Y ) :=


H(X, Y, 1) if c 6= 0,
H(X, 1, Y ) if c = 0 and b 6= 0,
H(1, X, Y ) otherwise

We say two homogeneous polynomials F,G ∈ K[U, V,W ] are transverse at the point P ∈ P2 if

1. F (P ) = G(P ) = 0 and
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2. Init(FP ) and Init(GP ) do not have a common factor.

This means geometrically that the curves F := {F = 0} and G := {G = 0} have no common tangent
at the point P .

Definition 4.13 (Intersection number) Let F,G ∈ S := K[U, V, W ] be two homogeneous poly-
nomials of degree, respectively, m and n. The intersection number is a map

P2 × S × S −→ N ∪ {∞}
(P, F, G) 7→ IP (F,G)

satisfying the following properties

1. IP (F,G) = ∞ if and only if F and G have a common factor F ′ such that F ′(P ) = 0, otherwise
IP (F,G) ∈ N,

2. IP (F,G) = 0 if and only if P 6∈ F ∩ G,

3. IP (F,G) = IP (G, F ),

4. IP (F,G) = IT (P )(F T , GT ) for any projective coordinate transformation T ,

5. IP (F,G) ≥ mP (F )mP (G) with equality occuring if and only if F and G are transverse at the
point P ,

6. if F =
∏

F ri
i and G =

∏
Gsi

j , then IP (F,G) =
∑

i,j risjIP (Fi, Gj),

7. if deg F ≥ deg G, then for any homogeneous polynomial B ∈ S with deg B = deg F − deg G
we have IP (F,G) = IP (F + BG,G).

Theorem 4.18 There exists a unique map from P2 × S × S to N ∪ {∞} satisfying the properties
of the intersection number.

Proof: [Ful69] Theorem 10 on page 75 2

Theorem 4.19 (Bézout) Let F,G ∈ K[U, V,W ] be two homogenous polynomials having no com-
mon factor. Then ∑

P∈F∩G
IP (F,G) = deg F · deg G.

Proof: [Ful69] page 112 2

Proposition 4.20 (Variant of the Bézout theorem) Let F ∈ K[U, V,W ] be a homogeneous
polynomial such that C∗ does not divide F . Then

deg(F ) = m · n

where n and m are the degrees of C∗ and F .
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Proof: We assume without loss of generality that C∗ 6= U and C∗ 6= W so that

C∗∞ := C∗ ∩ {(a : b : c) ∈ P2 | c = 0} = V(C∗,W )

is a finite set. Let G and G′ be any homogeneous polynomials with the same degree and non-
divisible by C∗. By proposition 4.17 we know that the divisor (G)− (G′) is a principal divisor and
consequently deg(G) = deg(G′). Therefore the divisors (F ) and (XdegF ) have the same degrees1 and
it suffices to show the proposition for F = U since deg(Ud) = d·deg(U). Now let x := u/w ∈ K(C∗).
Then (x) = (U) − (W ). Since C∗∞ is finite we can transform the curve such that the algebraic set
V(U,C∗,W ) = ∅ and consequently supp(U) ∩ supp(W ) = ∅. We have now (x)0 = (U) and

deg(U) = deg(x)0 = [K(C∗) : K(x)].

The coordinate pair (x, y) := (u/w, v/w) is a standard coordinate pair of K(C∗) with the defining
polynomial C(X, Y ) = C∗(U, V, 1). Therefore p(Y ) := C(x, Y ) ∈ K(x)[Y ] is the minimal polyno-
mial of y over K(x). Now it suffices to show that deg p(Y ) = n since deg p(Y ) = [K(C∗) : K(x)] =
deg(x)0 = deg(U). If this was not true, then all the monomials of C∗(U, V,W ) would have a degree
less n in the variable V and consequently C∗(0, 1, 0) = 0 which contradicts the hypothesis that
V(U,C∗,W ) = ∅. 2

The following proposition is very important. It shows that an infinitely close point of sufficiently
large order is a simple point.

Proposition 4.21 Let EP be the exceptional divisor of a point P of K(C∗). Then

deg EP = mP .

Proof: We assume that K has characteristic p > 0. If P is simple then EP = P where P ≡ P and
it is clear that deg EP = mP . Now let P be singular. We assume that there exists F ∈ K[U, V,W ]
such that

1. F (P ) = 0,

2. F and C∗ are transverse in P , and

3. for all P ′ ∈ V ′ := V \ {P} we have

(a) P ′ is a simple point of C∗, and
(b) F and C∗ are transverse in P ′.

where V := V(F,C∗). Since F and C∗ are transverse in all points P ′ ∈ V ′ we have (F )P ′ =
mP (F )EP . Further, since the points P ′ are simple points we have

deg(F )P ′ = mP ′(F ) deg EP ′ = mP ′(F ) = IP ′(C∗, F ).

Let m := deg F and n := deg C∗. By the preceding proposition we know that

m · n = deg(F ) = deg(F )P +
∑

P ′∈V ′

deg(F )P ′

= mP (F ) deg EP +
∑

P ′∈V ′

deg(F )P ′

= mP (F ) deg EP +
∑

P ′∈V ′

IP ′(C∗, F )

1Note that deg(G) denotes the degree of the divisor (G) and deg G the degree of the polynomial G
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By the Bézout theorem we have

m · n = IP (C∗, F ) +
∑

P ′∈V ′

IP ′(C∗, F )

= mP (F ) ·mP (C∗) +
∑

P ′∈V ′

IP ′(C∗, F ).

Combining these equations we obtain

mP (F ) deg EP = mP (F ) ·mP (C∗) ⇐⇒ deg EP = mP (C∗).

We must show now that there exists a polynomial F satisfying the conditions above. Without loss
of generality we can assume that

1. P = (0 : 0 : 1),

2. C∗(0, 1, 0) 6= 0,

3. CX 6= 0 where C(X, Y ) = C∗(U, V, 1), and

4. Y does not divide Init(C).

Set Fα := αUp + V W p−1 where α ∈ K. For any 0 6= α ∈ K the point (0 : 1 : 0) is the only point
of V(Fα) at infinity. We have V(Fα, C∗) ⊂ C∗ \ C∗∞. since C∗(0, 1, 0) 6= 0. Set F ′

α := Fα(X, Y, 1) =
Y + αXp. Since Y does not divide Init(C), F and C∗ are transverse at P .

If Q = (a : b : 1) ∈ C∗ \ C∗∞ is a simple point, then

Init(C(X + a, Y + b)) = CX(a, b)X + CY (a, b)Y 6= 0.

For all Q = (a : b : 1) such that Fα(Q) = 0 we have

Init(F ′
α(X + a, Y + b)) = Init((Y + b) + α(X + a)p) = Init((Y + αXp)) = Y.

We conclude that if Q = (a : b : 1) ∈ V is a simple point of C∗, then F and C∗ are transverse if and
only if CX 6= 0. Since CX 6= 0 and gcd(C,CX) = 1

W := {Q = (a : b : 1) ∈ C∗ \ C∗∞ | C ′
X(a, b) = 0} ∪ {Q ∈ C∗ \ C∗∞ | Q is singular}

is a finite set (by the Bézout theorem and the fact that an irreducible curve has only finitely many
singular points). It is now sufficient to choose 0 6= α ∈ K such that Fα(Q) 6= 0 for Q ∈ W \ {P}
which is always possible. Then every Q ∈ V(Fα, C∗) \ {P} is a simple point of C∗ and F and C∗

are transverse in Q. 2

4.5 Desingularization trees

We associate to a point P of K(C∗) a tree which is called desingularization tree of P (see [VT91]
on page 230) and denoted by TP . The root of TP is the point P and the sons of a knot of TP are its
infinitely close points of order 1. It will be useful to include the corresponding exceptional divisor
in every knot of TP . The tree TP is defined recursively by
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1. if P is simple, the P corresponds to a place P and

TP := [P,EP ]

where EP := P,

2. if P is singular, then
TP := [[P,EP ], [TQ | Q ∈ B(P )]]

where EP is the exceptional divisor of P .

The following proposition and theorem show that the desingularization tree of a point P of F/K
is always finite. This permits us to establish a bijective correspondence between the places P ∈ PF

above the point P and the leaves of the tree TP .
Let P := (0, 0;x, y) be a singular point of F/K and

C(X, Y ) =
n∏

i=1

(αiX + βiY )ei + H(X, Y )

be the defining polynomial of the coordinate pair (x, y). The degrees of the monomials of H are
greater than m := deg Init(C) =

∑n
i=1 ei. Assume that β1 6= 0. Then the strict transform C [x] of

C with respect to x is

C [x](X, Y1) =
n∏

i=1

(αi + βiY )ei + Xn−mH [x](X, Y1).

The infinitely close point Q1 := (0,−α1/β1;x, y1) of P is equivalent to the point (0, 0;x, y1−α1/β1).
The defining polynomial of the coordinate pair (x, y1 − α1/β1) is

C [x](X, Y − α1/β1) =
l∏

i=1

(αi + βi(Y − α1/β1)ei + Xn−mH [x](X, Y1 − α1/β1)

= (β1Y )e1

l∏
i=2

(αi + βi(Y − α1/β1)ei + Xn−mH [x](X, Y1 − α1/β1)

We have mQ1 = deg Init(C [x](X, Y − α1/β1)) which is clearly at most e1. Similiary, we show that
for some βi = 0 the multiplicity of the corresponding infinitely close point is at most ei. Thus we
have shown the following theorem.

Theorem 4.22 Let P be a singular point of F/K and Q1, . . . , Ql be its infinitely close points of
order one. Let mi be the multiplicity of Qi for i = 1, . . . , l. We have mP ≥

∑l
i=1 mi.

If all singular points of the curve C∗ are ordinary, i.e. all ei are one, then only one blow up is
necessary for each point to find the simple points above the singular points. It is clear that
the desingularization algorithm stops in this case. The situation is more difficult when there are
non-oridinary singular points. We need the following results to show that the desingularization
algorithm stops.

Proposition 4.23 Let P be a point of K(C∗) and P ∈ PF/K a place above the point P . For all
u ∈ OP there exists Nu ∈ N such that u ∈ O

P P(n) for n ≥ Nu.
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Proof: Set P0 := P and Pi := PP(i)
for i ∈ N≥0. Let Γi := (xi, yi) be coordinate pairs of K(C∗)

such that Pi ≡ (0, 0;xi, yi) and νP(xi) ≤ νP(yi). By lemma 4.9 we have

z/xi ∈ OPi+1 for every z ∈MPi

for all i ∈ N. Let u ∈ OP. Since the algebraic function field F is equal to the quotient field of any
local ring of a point of K(C∗) we can always find f, g ∈ OP0 such that u = f/g. If g /∈ MP0 , then
u ∈ OP0 and the proof is finished. If g ∈MP0 then there exists a maximal n such that

gn := g/(x0x1 · · ·xn) ∈ OPn+1

because νP(xi) > 0 and OPi ⊆ OP for all i ∈ N. We must have νP(gn) = 0. Otherwise gn ∈
P ∩ OPn+1 = MPn+1 and again by lemma 4.9 gn/xn+1 ∈ OPn+2 contradicting that n is maximal.
Consequently we have gn ∈ OPn+1 \MPn+1 and gn is invertible in OPn+1 . Set fn := f/(x0x1 · · ·xn).
Since νP(f) ≥ νP(g) and gn ∈ OPn+1 we have fn ∈ OPn+1 . This concludes the proof as u = fng−1

n ∈
OPn+1 . 2

Theorem 4.24 Let P be a point of K(C∗) and P ∈ PF/K above the point P . There exists N ∈ N
such that PP(n) ≡ P for all n ≥ N .

Proof: By lemma 2.20 there exists u ∈ P such that P is the unique zero of u. By the preceding
proposition there exist a l ∈ N such that u ∈ OPl

. Since u ∈ P∩OPl
= MPl

P is the unique place
above Pl. Let t be a local parameter of P. Then there exists a n ≥ l such that t ∈ OPn and in this
case we have EPn = P by the the definition of the exceptional divisor. Consequently Pn is a simple
point since mPn = deg EPn = 1. 2

Remark 4.7 Although differently formulated the preceding theorem is a well-known classical result
of the blowing up theory (see [Per95] Proposition 5.8).

In general, we need to blow up singular points on a projective curve. We can always reduce this
to the affine case. The algorithm described above is called local blow up since we always blow up
the singular singular points independently from each other. We do not obtain a smooth curve in
this way. But we do not need a smooth model of our plane singular curve. All we need are curves
on which some of the missing places correspond to simple points. To describe this convienently we
use the notion of a point of a function field. When we blow up a singular point we do not change
the singularities of the other singular points. This is the reason why we can always work locally.
We do not obtain a chain of blow ups like in [Per95] Proposition 5.8 (global blow up).

Proposition 4.25 Let C∗ := {C∗ = 0} be a plane projective curve and S be the set of singular
points of C∗. Let P ∈ PK(C∗) be a place of K(C∗) and P ∈ C∗ be the unique point such that P | P∗.
Then

1. P ≡ P if P is simple,

2. otherwise there exists a unique leaf Q of TP such that Q ≡ P.

There is a bijective correspondence between the set

{P∗ | P ∈ C∗ \ S} ∪ {Q | Q is a leaf of TP , P ∈ S}

and the set PK(C∗) of places of K(C∗).
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Proof: This is a consequence of the preceding theorem and the fact any place is above a unique
point of C∗.

Theorem 4.26 Let C∗ := {C∗ = 0} be a plane projective curve and S the set of singular points of
C∗. For all P ∈ C∗ let IP denote the set of all knots of TP (including the point P ). Let g be the
genus of K(C∗) and n := deg C∗. Then

g =
(n− 1)(n− 2)

2
− 1

2

∑
P∈S

∑
Q∈IP

mQ(mQ − 1).

Proof: [Per95] Corollaire 5.12 2

4.6 Adjoint divisors

The adjoint divisor play an essential role in the study of plane curves. It permits to characterize
canonical divisors of the function field of a plane projective curve. We deduce an important property
of the adjoint divisor which plays a crucial role in the determination of a basis of the vector space
associated to a divisor.

Definition 4.14 (Adjoint divisor of a point) Let P be a point of F/K. The adjoint divisor
AP of the point P is defined recursively by

AP := (mP − 1)EP +
∑

Q∈B(P )

AQ

where mP is the multiplicity of the point P and EP is the exceptional divisors of the point P .

Definition 4.15 (Adjoint divisor of a curve) Let C∗ := {C∗ = 0} be a projective curve and
P ∈ C∗. The adjoint divisor of the point P is the divisor

AP := AP∗ .

The adjoint divisor of the curve C∗ is the divisor

A :=
∑
P∈S

AP

where S is the set of singular points of C∗.

We have AP ≥ 0 for every P ∈ C∗ and degAP = 0 if and only if P is simple. The following
proposition gives a sufficient condition that an element of F/K is contained in a local ring of a
point.

Proposition 4.27 Let P be a point of F/K and z ∈ F . Then

(z)P ≥ AP =⇒ z ∈ OP .
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Proof: We use induction on N := degAP . If N = 0 then P is a simple point and (z)P = νP(z)P
where P ≡ P . We have νP(z) ≥ 0 and consequently u ∈ OP = OP .

Let now P be a singular point and suppose that the proposition is true for all n < N . We
suppose without loss of generality that P = (0, 0;x, y) and that (x, y) is an exceptional coordinate
pair of B(P ). Therefore

EP = (x)P =
∑

Q∈B(P )

(x)Q

and

(z)P =
∑

Q∈B(P )

(x)Q

≥ AP

= (mP − 1)EP +
∑

Q∈B(P )

AQ

=
∑

Q∈B(P )

((mP − 1)(x)Q +AQ).

Since local divisors in different points of B(P ) have always disjoint supports, we have

(z)Q ≥ (mP − 1)(x)Q +AQ for all Q ∈ B(Q).

This is equivalent to ( z

xmP−1

)
Q
≥ AQ for every Q ∈ B(Q).

Since degAQ < degAP = N for all Q ∈ B(P ) we have

z

xmP−1
∈

⋂
Q∈B(P )

OQ

by the induction hypothesis. The proposition is a consequence of the proposition 4.13 since

z ∈ xmP−1

 ⋂
Q∈B(P )

OQ

 ⊆ OP .

2

Proposition 4.28 Let C∗ := {C∗ = 0} be a projective plane curve and A(C∗) its adjoint divisor.
Then

degA = (n− 1)(n− 2)− 2g

where g is the genus of the curve and n := deg C∗.

Proof: This is a consequence of the proposition 4.21 and theorem 4.26. 2

Remark 4.8 This formula for the degree of the adjoint divisor in function of the genus of a pro-
jective plane curve is well-know. In [Gor52] this formula is established by using the conductor of
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the local ring OP in its integral closure OP taken in the field K(C∗); the conductor of OP is the
ideal of OP defined by

COP
OP

:= {z ∈ OP | zOP ⊆ OP }

which is also an ideal of OP . We show that if

AP =
r∑

i=1

niPi,

then

COP
OP

=
r⋂

i=1

(Pni
i ∩ OP ).

Moreover, we have
COP
OP

= {z ∈ OP | (z)P ≥ AP }.

Lemma 4.29 Let P = (0, 0;x, y) be a point of F/K such that X does not divide Init(C) where C
is the defining polynomial of (x, y). Then we have

C
OP [y/x]
OP

= Mr−1
P

where r is the multiplcity of the point P .

Proof: We show first Mr−1
P ⊆ C

OP [y/x]
OP

. Since the elements of B := {xiyj | i + j = r − 1} generate

Mr−1
P it suffices to show that B ⊂ C

OP [y/x]
OP

. Let u ∈ OP [y/x] and xiyj with i + j = r− 1. Since X

does not divide Init(C) we know that xr−1OP [y/x] ⊆ OP . We have therefore

xiyju = xr−1 yj

xj
u ∈ xr−1OP [y/x]

and by the definition of the conductor xiyj ∈ C
OP [y/x]
OP

.

We show now C
OP [y/x]
OP

⊆ Mr−1
P . Let f ∈ C

OP [y/x]
OP

and suppose without loss of generality that
f ∈ K[x, y]. We can write now

f := g0 + g1x + g2x
2 + . . . + glx

l

where gi ∈ K[y] for i = 0, 1, . . . , l. We show by induction that gix
i ∈ Mr−1

P for i = 0, 1, . . . , l. We
set for k := 1, 2, . . . , l

fk := gkx
k + gk+1x

k+1 + . . . + glx
l

and for k > l gk := 0 and fk := 0. Note that

g0
y

x
= (f − f1)

y

x
= f

y

x
− f1

y

x
∈ OP .

There are polynomials H0, A0 ∈ K[X, Y ] and G0 ∈ K[Y ] such that

G0(y)
y

x
=

A0(x, y)
H0(x, y)

.
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Let B0 ∈ K[X, Y ] be such that H0(0, 0) 6= 0 and

G0H0Y −XA0 = B0C.

Since X does not divide Init(G0H0Y ) we have Init(G0H0Y ) 6= Init(XA0) and consequently B0 6= 0.
We have deg Init(G0H0Y ) ≥ deg Init(B0C) ≥ r and therefore

deg Init(G0) ≥ r − deg Init(H0)− deg Init(Y ) = r − 1.

This shows g0 ∈Mr−1
P . Since Mr−1

P ⊂ C
OP [y/x]
OP

we have

f1 = f − g0 ∈ C
OP [y/x]
OP

.

Suppose now that gix
i ∈Mr−1

P for i ≤ n− 1. We have then

fn = f − (g0 + g1x + . . . + gn−1x
n−1) ∈ C

OP [y/x]
OP

and since fn+1/xn+1 ∈ OP ,

gn
yn+1

x
= gnxn yn+1

xn+1
= (fn − fn+1)

yn+1

xn+1
= fn

yn+1

xn+1
− fn+1

yn+1

xn+1
∈ OP .

By reasoning as previously we find Gn ∈ K[Y ] such that gn = Gn(y) and deg Init(Gn) ≥ r− (n+1)
and consequently gnxn ∈Mr−1

P for n = 0, 1, . . . , l. This proves f ∈Mr−1
P . 2

Theorem 4.30 (Conductor COP
OP

versus adjoint divisor AP ) Let OP be the integral closure
of OP in F and AP be the adjoint divisor of P . Then we have

COP
OP

= {u ∈ F | (u)P ≥ AP }.

Proof: (⊇) : Let v ∈ OP and u ∈ F with (u)P ≥ AP . Since OP = ∩P|POP we have (v)P ≥ 0 and

(uv)P ≥ AP . By Proposition 4.27 we have uv ∈ OP and consequently u ∈ COP
OP

.
(⊆) : We suppose without loss of generality that P = (0, 0;x, y) and that X does not divide
the initial form of the defining polynomial C of (x, y). Then OP [y/x] ⊆ OP and consequently
COP
OP

⊆ C
OP [y/x]
OP

. By the preceding lemma we have COP
OP

⊆ Mr−1
P . If u ∈ COP

OP
and v ∈ OP then

u ∈ Mr−1
P and also uv ∈ Mr−1

P . Therefore u/xr−1 ∈ OP [y/x] and (u/xr−1)v ∈ OP [y/x] and
consequently

w :=
u

xr−1
∈ COP

OP [y/x].

To conclude the proof it suffices to show that

(w)P ≥
∑

Q∈B(P )

AQ = AP − (r − 1)EP

since then (u)P = (xr−1)P = (r − 1)EP + (w)P ≥ AP . We show this inequality by induction on
n := degAP . If n = 0 then the point P is simple and the inequality is trivial. Suppose that n > 0.
The induction hypothesis is that the theorem is true for all degrees smaller than n. Since the point
P is singular we have degAQ < degAP for any Q ∈ B(P ) and by using the induction hypothesis
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it suffices to show that w ∈ C
OQ

OQ
. This is clear if P has only one infinitely close point since then

OP [y/x] is a local ring and consequently OQ = OP [y/x] and OQ = OP . We suppose now that
#B(P ) ≥ 2 and let Q ∈ B(P ). Set

z :=
∏

Q′∈B(P )\{Q}

(y

x
− y

x
(Q′)

)
.

The element z ∈ OQ in such a way that

z−1 ∈ OQ and z ∈MQ′ for all Q′ ∈ B(P ) \ {Q}.

Let v ∈ OQ. By the constuction of z there exist a sufficiently large integer n such that (vzm) ≥ AQ′

for all Q′ ∈ B(P ) \ {Q} and consequently

vzm ∈ OQ ∩

 ⋂
Q′∈B(P )\{Q}

OQ′

 ⊆ OP .

Recall that w ∈ COP

OP [y/x] and consequently wvzm ∈ OP [y/x] ⊂ OQ. Since z is invertible in OQ we

have wv ∈ OQ and consequently w ∈ C
OQ

OQ
and by the induction hypothesis (w)Q ≥ AQ. Repeating

the construction for all Q ∈ B(P ) we obtain

(w)P =
∑

Q∈B(P )

(w)Q ≥
∑

Q∈B(P )

AQ.

See also [Mnu97]. 2

Proposition 4.31 (Canonical divisor) Let C∗ := {C∗ = 0} be a projective plane curve and A
its adjoint divisor. If G is a homogeneous polynomial such that deg G = deg C∗ − 3 and (G) ≥ A
then

K := (G)−A

is a canonical divisor of the function field K(C∗).

Proof: [Gor52] Theorem 9. 2

Definition 4.16 (Noether condition) Let C∗ := {C∗ = 0} be a projective plane curve. Let
F,G ∈ K[U, V,W ] be two homogeneous polynomials such that C∗ does not divide G. We say the
pair (F,G) satisfies the Noether condition in the point P ∈ C∗ if

F
P
/G

P ∈ OP∗ .

Theorem 4.32 (Max Noether’s Fundamental Theorem) Let C∗ := {C∗ = 0} a projective
plane curve. Let F,G ∈ K[U, V,W ] be two homogeneous polynomials such that C∗ does not divide
G. Then the following conditions are equivalent:

1. there exist two homogeneous polynomials A,B ∈ K[U, V,W ] such that deg A+deg G = deg B+
deg C∗ = deg F and

F = AG + BC∗.
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2. the pair (F,G) satisfies the Noether condition in all points of C∗.

Proof: See [Ful69] on page 120. 2

Theorem 4.33 Let C∗ := {C∗ = 0} be a projective plane curve, A be its adjoint divisor and
F,G ∈ K[U, V,W ] be two homogeneous polynomials such that C∗ does not divide G. If

(F ) ≥ A+ (G),

then there exist two homogeneous polynomials A,B ∈ K[U, V,W ] such that deg A+deg G = deg B+
deg C∗ = deg F and

F = AG + BC∗.

Proof: If (F ) ≥ A + (G), then (F )P ≥ AP + (G)P and consequently we have (FP
/G

P )P =
(F )P − (G)P ≥ AP for all P ∈ C∗. The theorem is now a consequence of proposition 4.27 and Max
Noether’s Fundamental theorem. 2

Theorem 4.34 Let C∗ := {C∗ = 0} be a projective plane curve and A be its adjoint divisor.
Let D and D′ be two divisors of K(C∗) such that D ≡ D′ and suppose that D′ is positive. If
G ∈ K[U, V, W ] is a homogeneous polynomial such that

(G) = D +A+ R

for some positive divisor R, then there exists a homogeneous polynomial G′ ∈ K[U, V,W ] such that
deg G′ = deg G and

(G′) = D′ +A+ R.

Proof: Since D ≡ D′ there exists z ∈ K(C∗) such that

D = (z) + D′.

Let H,H ′ ∈ K[U, V,W ] be two homogeneous polynomials such that (z) = (H)− (H ′). We have

(H ′G) = (H ′) + (G)
= (H ′) + D +A+ R

= (H ′) + (z) + D′ +A+ R

= (H) + D′ +A+ R.

Since the divisors (H), D′,A and R are positive we have

(H ′G) ≥ A+ (H).

By the preceding theorem there exist two homogeneous polynomials G′, B ∈ K[U, V, W ] such that
deg G′ + deg H = deg B + deg C∗ = deg H ′G and

H ′G = G′H + BC∗

We have (H ′G) = (G′H) and consequently (G′) = (H ′G)− (H) = D′ +A+ R. 2

We can derive from the following theorem an algorithm which computes a basis of the vector space
associated to a divisor of the function field of a plane curve.
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Theorem 4.35 Let C∗ := {C∗ = 0} be a projective plane curve, A be its adjoint divisor and D be
a divisor of K(C∗). Let G0 ∈ Sd such that C∗ does not divide G0 and

(G0) ≥ D +A.

Then
L(D) := {G/G0 | G ∈ Sd non-divisible by C∗ and (G) ≥ (G0)−D} ∪ {0}

where G and G0 are the residual images of, respectively, G and G0 in K[C∗] and Sd ⊂ K[U, V, W ]
is the set of homogeneous polynomials of degree d.

Proof: (⊇) : Let G ∈ K[U, V,W ] be a homogeneous polynomial such that deg G = deg G0, C∗ does
not divide G and (G) ≥ (G0)−D. Set z := G/G0. Then

(z) + D = (G)− (G0) + D ≥ 0

so that z ∈ L(D).
(⊆) : Let z ∈ L(D) \ {0}. Then D′ := D + (z) ≥ 0 by the definition of L(D). Since D′ ≡ D
and (G0) ≥ D + A we can apply the preceding theorem with R := (G0) − (D + A) ≥ 0 to find a
G′ ∈ K[U, V, W ] such that deg G′ = deg G and

(G′) = D′ +A+ R.

We have
(G′)− (G0) = D′ −D = (z).

Let z′ := G/G0. Then (z/z′) = 0. Since only the constants have no zeros and no poles α := z/z′ ∈
K and consequently

z = αz′ := αG′/G0

which proves that z can be written in the above form. 2

Let us remark that the theorem also applies to a divisor D which is not positive. It is clear that

(G0) ≥ A+ D =⇒ (G0) ≥ (A+ D)+.

The following algorithm is called Brill-Noether algorithm and uses exactly the preceding theorem
to compute a basis of the vector space associated to a divisor of the function field of a plane curve.

Algorithm 1 Brill-Noether

• Input: A divisor of the function field K(C∗) where C∗ is a projective curve.

• Output: A basis of the vector space L(D).

1: Set B := D +A where A is the adjoint divisor of the curve C∗.
2: Let d ∈ N be sufficiently big so that there exists a homogeneous polynomial G ∈ Sd which is

not divisible by C∗ such that (G) ≥ B+ where B+ is the positive part of B.
3: Compute a basis {G1, G2, . . . , Gs} of the K-vector space

V := {G ∈ Sd | C divides G or (G) ≥ B+} ∪ {0}.
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4: If d ≥ deg C∗, then it is necessary to reduce the basis {G1, G2, . . . , Gs} modulo the vector space

W := {A ∈ Sd | C∗ divides A}.

It suffices to choose a basis {A1, A2, . . . , Ak} of W with Ai ∈ Sd (i = 1, 2, . . . , k) and to
supplement this basis to a basis

{A1, A2, . . . , Ak, G
′
1, G

′
2, . . . , G

′
s′}

of the vector space V . Now the vector space V ′ ⊂ Sd∪{0} spanned by the elements {G′
1, G

′
2, . . . , G

′
s′}

is such that V ′ \ {0} is exactly the set of all homogeneous polynomials of degree d and non-
divisible by C∗ such that (G) ≥ B+.

5: Choose G0 ∈ V ′ and compute the intersection divisor (G0).
6: Determine like in the two preceding steps a basis {G1, G2, . . . , Gk} of the vector space V ′′ ⊂

Sd∪{0} such that V ′′\{0} is the set of all homogeneous polynomials of degree d and non-divisible
by C∗ such that (G) ≥ (G0)−D.

7: Set Gi := Gi + 〈C∗〉 ∈ K[C∗] for i := 0, 1, . . . , k and return

{Gi/G0 | i = 1, 2, . . . , k}

which is a basis of L(D).
Let us summarize what we need to know in order to apply the Brill-Noether algorithm:

1. Compute the adjoint divisor of a projective plane curve C∗ := {C∗ = 0}.

2. For a divisor B and an integer d compute a basis of the subspace V of Sd ∪ {0} where

V := {G ∈ Sd | C∗ divides G or (G) ≥ B} ∪ {0}.

3. For a homogeneous polynomial G ∈ Sd \ {0} compute the intersection divisor G with C∗.

4.7 Interpolating forms

Definition 4.17 (Interpolating form) Let C∗ := {C∗ = 0} be a projective curve and B a divisor
of K(C∗). An interpolating form for the divisor B is a homogeneous polynomial G ∈ K[U, V,W ]
such that one of the following properties is satisfied:

1. C∗ divides G.

2. (G) ≥ B if C∗ does not divide G.

We will use the P-adic power series expansion (see section IV.2.2. in [Sti93]) to compute the
interpolating forms. Let us summerize the facts we need.

A valued field (L, ν) is a field L equipped with a discrete valuation ν. We say a sequence (sn)n≥0

in L is convergent if there exists an element s ∈ L (called the limit of the sequence) which satisfies:
for any c ∈ R there exists an index Nc ∈ N such that ν(s− sn) ≥ c whenever n ≥ Nc. The limit is
unique and we write s = limn→∞ sn.

A sequence (sn)n≥0 is called a Cauchy sequence if it has the following property: for any c ∈ R
there exists an index Nc ∈ N such that ν(sn − sm) ≥ c whenever n, m ≥ Nc. Any convergent
sequence is a Cauchy sequence. In general, it is not true that all Cauchy sequences are convergent.
Hence we have the following notions.
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Definition 4.18 (Completion) Let (L, ν) be a valued field.

1. (L, ν) is said to be complete, if any Cauchy sequence in L is convergent.

2. A completion of (L, ν) is a valued field (L̂, ν̂) with the following properties

(a) L ⊆ L̂ and ν is the restriction of ν̂ to L.

(b) (L̂, ν̂) is complete.

(c) L is dense in L̂, i.e. for any s ∈ L̂ there exists a sequence (sn)n≥0 in L with limn→∞ sn =
s.

Proposition 4.36 For any valued field (L, ν) there exists a completion (L̂, ν̂). It is unique in the
following sense: if (L̃, ν̃) is another completion of (L̂, ν̂) then there exists an isomorphism f : L̂ → L̃
such that ν̂ = ν̃ ◦ f .

Proof: [Sti93] IV.2.3 Proposition 2

Definition 4.19 (P-adic completion) Let P be a place of the function field F/K. The comple-
tion with respect to the valuation νP is called the P-adic completion of F . We denote the completion
by F̂P and the valuation of F̂P by ν̂P.

Theorem 4.37 (P-adic power series expansion) Let P ∈ PF be a place of degree one and t
be a local parameter of P. Then any element z ∈ F̂P has a unique representation of the form

z(t) :=
∞∑

i=n

cit
i

with n ∈ Z and ci ∈ K. This representation is called the P-adic power series expansion of z with
respect to t.

On the other hand, if (ci)i≥n is a sequence in K, then the series
∑∞

i=n cit
i converges in F̂P , and

we have

ν̂P

( ∞∑
i=n

cit
i

)
= ord

( ∞∑
i=n

cit
i

)
where ord

(∑∞
i=n cit

i
)

= min{i | ci 6= 0}.

Proof: [Sti93] IV.2.6. Theorem 2

Remark 4.9 (Computation of the P-adic power series expansion) Let P be a place of F/K
of degree one and t be a local parameter of P. We show how to compute the P-adic power series
expansion of z ∈ F̂P with respect to t. Since deg P = 1 we can identify the residue class field FP

with K.
Let n1 := ν̂P(z). There exists an element y ∈ F with ν̂P(z − y) > n1 (since F is dense in F̂P).

By the Triangle Inequality it follows that νP(y) > n1, hence y = u1t
n1 for some u1 ∈ O∗

P. Then
ci := u1(P) ∈ K \ {0} and νP(u1 − c1) > 0. We have

z = c1t
n1 + (u1 − c1)tn1 + (z − u1t

n1) = c1t
n1 + (u1 − c1)tn1 + (z − y).
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Set z1 := (u1 − c1)tn1 + (z − y). We have now{
z = c1t

n1 + z1

n2 := ν̂P(z1) > n1.

In the same manner, we find a2 ∈ K \ {0} and z2 ∈ F̂P such that{
z = c1t

n1 + c2t
n2 + z2

n2 := ν̂P(z2) > n2.

Iterating this construction, we obtain a representation of z in the form z =
∑∞

i=1 ait
ni. By the

preceding theorem we know that the representation is unique and therefore z =
∑∞

i=1 ait
ni is the

P-adic power series expansion of z with respect to t.
Moreover, using properties of convergence we can easily show that for all x, y ∈ F̂P we have

(x + y)(t) = x(t) + y(t) and xy(t) = x(t)y(t) where the addition and multiplication are those of the
Laurent series field

K((t)) =

{ ∞∑
i=n

cit
i | n ∈ Z, ci ∈ K

}
.

Consequently F̂P is isomorphic to the field K((t)).

Definition 4.20 (Local parameterization) Let C∗ := {C∗ = 0} be a projective plane curve, P

a place of K(C∗) and P = (a : b : c) ∈ C∗ the unique point with P | P∗. Let t be a local parameter of
P and Γ := (x, y) be one of the three standard coordinate pairs such that P∗ ∈ Z(Γ). We associate
to the place P its local parameterization [P] which is defined by

[P] :=


[x(t), y(t), 1] if c 6= 0,
[x(t), 1, y(t)] if c = 0 and b 6= 0,
[1, x(t), y(t)] otherwise.

Note that the definition of [P] is in accordance with the definition of P∗. Further we associate to
a homogeneous polynomial G ∈ K[U, V,W ] its local parameterization in P, denoted by G[P]. It is
defined by

G[P] := G(s0, s1, s2)

where [P] = [s0, s1, s2] is the local parameterization of the place P.

We assume that c 6= 0. Then by definition s0, s1 and s2 are the P-adic power series expansions of,
respectively, u/w, v/w and w/w = 1. Let G ∈ K[U, V, W ] be a homogeneous polynomial, g := G

P

and g(t) ∈ K((t)) be the P-adic power series expansion of g with respect to t. We have

g(t) =
G(u, v, w)

wdeg G
(t) = G(u/w, v/w, 1)(t) = G(s0, s1, s2) = G[P].

By the theorem 4.37 we have
νP(g) = ord(G[P])

and since g ∈ OP we have νP(g) ≥ 0. Therefore we can write

G[P] =
∞∑
i=0

cit
i ∈ K((t)).
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For n ∈ N we define the truncated power series

G[P](n) := (c0, c1, . . . , cn−1) ∈ K
n

and the map

ΨnP :
{

Sd ∪ {0} → K
n

G 7→ G[P](n).

It is clear that ΨnP is a K-linear map and that its kernel is

ker ΨnP = {G ∈ Sd | ord(G[P]) ≥ n} ∪ {0}

= {G ∈ Sd | νP(GP ) ≥ n} ∪ {0}.

We fix a basis {H1,H2, . . . ,Hl}2 of the vector space Sd ∪ {0} and set

ΨnP(Hj) = (cj,0, cj,1, . . . , cj,(n−1))

for j = 0, 1, . . . , l. Consider the matrix

M [nP](d) :=


c1,0 c1,1 . . . c1,(n−1)

c2,0 c2,1 . . . c2,(n−1)
...

...
. . .

...
cl,0 cl,1 . . . cl,(n−1)

 .

It is clear that

νP

(
l∑

i=1

αiH
P

)
≥ n ⇐⇒ [α1, α2, . . . , αl]M [nP](d) = 0.

To find a basis of the vector space of interpolating forms of degree d for a positive divisor

B := n1P1 + n2P2 + . . . + nkPk

it suffices to calculate the left kernel of the matrix

M [B](d) = [M [n1P1](d) | M [n2P2](d) | . . . | M [nkPk](d)]

since

(
l∑

i=1

αiHi) ≥ B or C∗ divides
l∑

i=1

αiHi ⇐⇒ [α1, α2, . . . , αl]M [B](d) = 0.

It is clear that d must be sufficiently large if we want to find G ∈ Sd with (G) ≥ B and C∗ does
not divide G.

Proposition 4.38 Let C∗ := {C∗ = 0} be a projective plane curve and B a positive divisor of
K(C∗). If d ∈ N is such that

d > max{n− 1,
n

2
+

deg B

n
− 3

2
},

where n := deg C∗ then there exists G ∈ Sd such that C∗ does not divide G and (G) ≥ B.

Proof : [Hac96], Corollaire 2.7.6 2

2We can take all the monomials of degree d. There are exactly l = (d + 1)(d + 2)/2 of them.
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4.8 The Brill-Noether algorithm over a finite field

In this section we fix K := Fq. Let C∗ := {C∗} be a projective plane curve defined over K and
F and F denote, respectively, the function fields K(C∗) and K(C∗) of C∗. We show how to use
the Brill-Noether-Algorithm to compute a basis of L(D) where D is a divisor of F . To do that we
study the properties of extensions F ′ with F ⊆ F ′ ⊆ F .

4.8.1 Algebraic extensions of function fields

Any function field over K can be regarded as a finite extension of a rational function field K(x).
This is one of the reasons why it is of interest to investigate field extensions F ′/F of algebraic
function fields.

In this section, we shall describe the relationship between places, divisors and the gen-
era of F ′/K ′ and F/K where F ′ = K ′F is a constant field extension. The study of
constant field extensions reduces many problems to the case where the constant field is
algebraically closed (which is often simpler because all places have degree one). This
permits us to use the Brill-Noether algorithm for the construction of geometric Goppa
codes over finite fields even though the algorithm is defined only for algebraically closed
fields.

F/K denotes an algebraic function field of one variable with the full constant field K. We consider
function fields F ′/K ′ (where K ′ is the full constant field of F ′) such that F ′ ⊇ F is an algebraic
extension and K ′ ⊇ K. We consider only extensions F ′ ⊇ F with F ′ ⊆ F .

Definition 4.21 (Algebraic, finite and constant field extensions) An algebraic function field
F ′/K ′ is called an algebraic extension (finite extension) of F/K if F ′ ⊇ F is an algebraic field
extension (finite field extension) and K ′ ⊇ K. The algebraic extension F ′/K ′ of F/K is called a
constant field extension if F ′ = FK ′, the composite field of F and K ′.

A place P′ ∈ PF ′ is said to lie over P ∈ PF if P ⊆ P′. We also say that P′ is an extension of
P, and we write P′ | P.

Proposition 4.39 Let F ′/K ′ be an algebraic extension of F/K. Then the following assertions are
equivalent:

1. P′ | P.

2. OP ⊆ OP′.

3. There exists an integer e ≥ 1 such that νP′(x) = e · νP(x) for all x ∈ F .

Proof: [Sti93], III.1.4 Proposition 2

Definition 4.22 Let F ′/K ′ be an algebraic extension of F/K, and let P′ ∈ PF ′ be a place of F ′/K ′

lying over P ∈ PF .

1. The integer e(P′ | P) := e with

νP′(x) = e · νP(x) for any x ∈ F

is called the ramification index of P′ over P. We say that P′ | P is ramified if e(P′ | P) > 1,
and P′ | P is unramified if e(P | P′) = 1.
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2. f(P′ | P) := [F ′
P′ : FP] is called the relative degree of P′ over P.

Note that f(P′ | P) can be finite or infinite; the ramification index, however, is always a natural
number.

Proposition 4.40 Let F ′/K ′ be an algebraic extension of F/K.

1. For any place P′ ∈ PF ′ there is exactly one place P ∈ PF such that P′ | P, namely P = P′∩F .

2. Conversely, any place P ∈ PF ′ has at least one, but finitely many, extensions P′ ∈ PF ′.

Proof: [Sti93], III.1.7 Proposition 2

Theorem 4.41 Let F ′/K ′ be a finite extension of F/K. For every place P ∈ PF we have∑
P′|P

e(P′ | P)f(P′ | P) = [F ′ : F ].

Proof: [Sti93], III.1.11 Theorem 2

Definition 4.23 (Conorm) Let F ′/K ′ be an algebraic extension of F/K. For a place P ∈ PF we
define its conorm (with respect to F ′/K ′) by

ConF ′/F (P) :=
∑
P′|P

e(P′ | P)P′,

where the sum runs over all places P′ ∈ PF ′ lying over P. The conorm map is extended to a
homomorphism from DF to DF ′ by setting

ConF ′/F

(∑
nPP

)
:=
∑

nPConF ′/F (P).

4.8.2 Constant field extensions

We are especially interested in constant field extensions. The following theorem gives in a nutshell
the most important properties of constant field extensions.

Theorem 4.42 Let F/K be a function field, K ⊆ K ′ ⊆ K an algebraic extension of K and
F ′ = FK ′.

1. K ′ is the full constant field of F ′/K ′.

2. F ′/F is unramified (i.e. e(P′ | P) = 1 for all P ∈ PF and all P′ ∈ PF ′ with P′ | P).

3. F ′/K ′ has the same genus as F/K.

4. W is a canonical divisor of F/K if and only if and only if ConF ′/F (W ) is a canonical divisor
of F ′/K ′.

5. Let D ∈ DF and set D′ := ConF ′/F (D). Then

deg D′ = deg D

and
dim D′ = dim D.

Moreover,
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(a) a basis of the K-vector space L(D) is a basis of the K ′-vector space L(D′), and

(b) a basis of the K ′-vector space L(D′) containing only elements of F is a basis of the
K-vector space L(D).

Proof: [Sti93], proposition III.6.1 and theorem III.6.3 2

We compute a basis of the vector space L(D) where D ∈ DF is a divisor of F by applying the
Brill-Noether algorithm to the divisor D := ConF/F D and making sure that the basis contains only
elements of K(C∗). Consider the Frobenius map

σ :
{

K → K
α 7→ αq .

Let f ∈ K[C∗] be a form and F ∈ K[U, V, W ] a homogeneous polynomial with f := F + 〈C∗〉. We
set

fσ := F σ + 〈C∗〉

where σ acts on the coefficients of F . Since C∗ ∈ K[U, V,W ] it is clear that fσ = 0 if and only if
f = 0. We can therefore extend σ to the field F in the following way:

σ :
{

F → F
f/g 7→ fσ/gσ .

It is easy to show that for any z ∈ F we have z ∈ F ⇐⇒ σ(z) = z, i.e. the automorphism σ fixes
the field F .

The following definition is classic.

Definition 4.24 Let E be a set to which the map σ is extended. We say a ∈ E is σ-conjugated
to b ∈ E if there exists i ∈ N with σi(a) = b. We call the set

Orbσa := {σ(a) | i ∈ N}

the σ-orbit of a.

Remark 4.10 We show that σ can be extended to points P , local rings OP , places P and divisors
D of F/K, points of C∗, desingularization trees TP and powers series expansions z(t). A σ-orbit
can always be reconstructed from one element by applying σ. In the following we always choose an
element to represent the σ-orbit.

Proposition 4.43 Let Kr := Fqr and consider the constant field extension Fr := FKr. If P is
any place of F of degree m, then there exist d = gcd(m, r) pairwise distinct places P′

1,P
′
2, . . . ,P

′
d

of Fr above P. These places are of degree m/d and mutually conjugated by the automorphism σ.

Proof: [Sti93], lemma V.1.9 2

Proposition 4.44 Let Q ∈ PF/K .

1. νQ ◦ σ is a discrete valuation of F/K.

2. Qσ := σ(P) is a place of F/K, σ(OQ) = OQσ and νQ ◦ σ = νQσ .
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3. Let P := Q∩ F and r := deg P. Then Qσr
= Q and

ConF/F P =
∑

Q′∈OrbσQ
Q′.

Proof: The assertions (1) and (2) follow directly from the fact that σ is an automorphism of the
field F such that σ(α) = α for all α ∈ K. The assertion (3) follows from the preceding proposition.
2

Remark 4.11 By the preceding proposition it suffices to consider only one place in the support of
ConF/F P since we can always determine the other places by the action of σ. The same argument
is also valid for a divisor D = n1P1 + n2P2 + . . . + nkPk of the function field F/K; in this case it
suffices to consider only one place of suppConF/F Pi for each place Pi ∈ suppD.

Recall that the Brill-Noether algorithm uses the adjoint divisor of the curve C∗ and intersection
divisors of homogeneous polynomials with the curve. If we want to take advantage of the preceding
remark we must know if these divisors are the conorms of some divisors of the function field F/K.
We introduce the following definition which facilitates the treatment of this question.

Definition 4.25 Let σ be the Frobenius map extended to the field F .

1. Let D :=
∑

nQQ be a divisor of F/K. We call the divisor

Dσ :=
∑

nQQσ

the conjugated divisor of D by σ. We say D is K-rational if D = Dσ.

2. Let P := (a, b;x, y) be a point of F/K. We call

P σ := (σ(a), σ(b);σ(x), σ(y))

the conjugated point of P by σ.

3. Let TP be the desingularization tree of the point P . The conjugated tree of TP by σ is the
tree defined recursively by

(a) T σ
P := [P σ, Eσ

P ] if P is a leaf.

(b) T σ
P := [P σ, {T σ

Q | Q ∈ B(P )}] otherwise.

Lemma 4.45 Let E be a divisor of F/K. Then there exists a divisor D of F/K such that
ConF/KD = E if and only if E is K-rational. There is a bijective correspondence between the
divisors of F/K and the K-rational divisors of F/K.

Proof: This is a consequence of the proposition 4.44. 2

The following lemma and its corollary are easily proved.

Lemma 4.46 Let P be a point of F/K, P be a place of F/K, TP be a desingularization tree and
z ∈ F .
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1. P σ is a point of F/K.

2. P | P if and only if Pσ | P σ.

3. T σ
P = TP σ .

4. (z)σ
P = (σ(z))P σ for u ∈ F .

Corollary 4.47 Let C∗ := {C∗ = 0} be a projective curve defined over K.

1. P := (a : b : c) ∈ C∗ if and only if P σ := (σ(a), σ(b), σ(c)) ∈ C∗. P is singular if and only if
P σ is singular. Moreover, we have σ(OP ) = OP σ for all P ∈ C∗.

2. The adjoint divisor A of the curve C∗ is K-rational.

3. The intersection divisor (G) of a homogeneous polynomial G ∈ K[U, V,W ] and the curve C∗
is K-rational.

4.8.3 Computation of a basis of L(D)

We show how to use the Brill-Noether algorithm to compute a basis of L(D) where D is a divisor
of F/K. We fix a set D ⊂ PF defined by

1. for all places P ∈ PF choose a unique place Q ∈ suppConF/F P. This place is called the

distinguished place and denoted by P̂ := Q.

2. we fix the set D := {P̂ | P ∈ PF }.

Note that there is a bijective correspondence between the places P of F/K and the distinguished
places P̂ ∈ D. We can extend this bijective correspondence to divisors by associating to every
divisor D :=

∑
P∈PF

nPP of F/K the divisor

D̂ :=
∑

P∈PF

nPP̂

which is called the distinguished divisor of D. Let E :=
∑

Q∈PF
nQQ is a K-rational divisor of

F/K. We associate to E the divisor
Ê :=

∑
Q∈D

nQQ

which we call the distinguished divisor of E. We know that Ê is the distinguished divisor D̂ of
some divisor D of F/K.

Let D ∈ DF/K be a divisor of F/K, D := ConF/F D ∈ DF/K be the conorm of D and A ∈ DF/K

be the adjoint divisor of the curve C∗.
The Brill-Noether algorithm uses the divisors D+A, (G0) and (G0)−D where G0 is a homoge-

neous polynomial such that (G0) ≥ D +A to calculate a basis of L(D). We know that the divisor
D is K-rational and so is the divisor D+A since the adjoint divisor A is K-rational. Therefore the
intersection divisor (G0) such that (G0) ≥ D+A can be K-rational. In this case we can choose the
homogeneous polynomial G0 ∈ K[U, V,W ]. The intersection divisors (Gi) with (Gi) ≥ (G0) − D
for i = 1, . . . ,dimK L(D) can also be K-rational. It suffices to consider only distinguished divisors
and to apply the Frobenius map only when necessary.
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The following is very important. Let Q ∈ DF/K be a distinguished place (Q ∈ D) and
r := |Orbσ(Q)|. By the proposition 4.44 we know that the place P := Q ∩ F of F/K
is of degree r. Further by the proposition 4.43 we know that the place P′ = Q ∩ Fr of
Fr/Kr (Fr := Kr where Kr := Fqr) is of degree one, r = |Orbσ(P′)| and P′σ = Qσ∩Fr.
Therefore it always suffices to consider finite extensions of K. By a distinguished place
P̂ we mean in the following always a place P′ of the minimal finite extension Fr/Kr of
F/K such that deg P′ = 1 and P = P′ ∩ F . This can be generalized to points, their
local rings and divisors of function fields, points of C∗, powers series expansions, blow
up and desingularization trees. In the next chapter we will see how to make sure that
the extensions are minimal.

The algorithm on the next page is a version of the Brill-Noether algorithm adapted for this situation.

Algorithm 2 Brill-Noether over a finite field

• Input: The distinguished divisor D̂ of a divisor D of the function field K(C∗) of a plane
projective curve C∗ defined over K.

• Output: A basis of the vector space L(D).

1: Let Â be the distinguished adjoint divisor of the curve C∗. Set B := D̂ + Â and

B+ = n1 +Q1 + n2Q2 + . . . + nrQr

the effective part of B where Qi ∈ D and Qi 6= Qj if i 6= j.
2: Let d ∈ N be sufficiently big so that there exists a homogeneous polynomial G ∈ Sd(K) which

is not divisible by C∗ such that (̂G) ≥ B.
3: Fix {H1,H2, . . . ,Hl} a basis of Sd(K) ∪ {0}.
4: Determine for each place Qi ∈ suppB+ the matrix Mi := M [niQi](d) in dependence on the

fixed basis.
5: For each matrix Mi construct the matrix M ′

i by the following algorithm:
6: M ′

i := Mi

7: Let c1, c2, . . . , cm be the m columns of the matrix Mi.
8: for j = 1 to m do
9: c := cj

10: while cj 6= cσ do
11: c := cσ

12: attach the column c to the matrix M ′
i

13: end while
14: end for
15: The vector space spanned by the columns of the matrix M ′

i is invariant under the action of σ.
Note: if s ∈ N such that Qσs

i then the attachment of the columns corresponds to the attachment
of linear conditions imposed by the places Qσk

i for k = 2, 3, . . . , s− 1.
16: Compute M

(e)
i the column echelon form of each matrix M ′

i . Then the coefficients of all the
matrices M

(e)
i are in K.

17: Compute a basis {b1, b2, . . . , bs} of the left kernel of the matrix

[M (e)
1 | M (e)

2 | · · · | M (e)
r ].
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We have
bi = (αi,1, αi,2, . . . , αi,l)

where l = dimK(Sd(K) ∪ {0}) = (d + 1)(d + 2)/2. Let

Gi :=
l∑

j=1

αi,jHj , k = 1, 2, . . . , s.

18: If d ≥ deg C∗, then it is necessary to reduce the basis {G1, G2, . . . , Gs} modulo the vector space

W := {A ∈ Sd | C∗ divides A}.

It suffices to choose a basis {A1, A2, . . . , Ak} of W with Ai ∈ Sd(K) (i = 1, 2, . . . , k) and to
supplement this basis to a basis

{A1, A2, . . . , Ak, G
′
1, G

′
2, . . . , G

′
s′}

of the vector space V . Now the vector space V ′ ⊂ Sd∪{0} spanned by the elements {G′
1, G

′
2, . . . , G

′
s′}

is such that V ′ \ {0} is exactly the set of all homogeneous polynomials of degree d and non-
divisible by C∗ such that (̂G) ≥ B+.

19: Choose G0 ∈ V ′ and compute the intersection divisor (̂G0).
20: Determine like in the two preceding steps a basis {G1, G2, . . . , Gk} of the vector space V ′′ ⊂

Sd∪{0} such that V ′′\{0} is the set of all homogeneous polynomials of degree d and non-divisible
by C∗ such that (̂G) ≥ (̂G0)−D.

21: Set Gi := Gi + 〈C〉 ∈ K[C∗] for i := 0, 1, . . . , k and return

{Gi/G0 | i = 1, 2, . . . , k}

which is a basis of L(D).

Remark 4.12 Consider the matrices Mi and let Ki be minimal extension of K containing all the
coefficients of Mi. A priori all computations with the matrices Mi are carried out in the minimal
extension K ′ of K such that K ′ ⊇ K for all i. But since all the computations with the matrix
Mi can be carried out independently from the computations with the matrices Mj for i 6= j it is
advantageous to carry out the computations with each matrix Mi in the field Ki. We can do it since
we always work with minimal extensions.
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Chapter 5

Algorithms

5.1 Algebraic sets

Let I ⊂ K[X, Y ] be an ideal such that its algebraic set V(I) is finite. Consider the set

VX(I) := {a ∈ K | there exists b such that (a, b) ∈ V(I)}

and set
p(Z) :=

∏
a∈VX(I)

(Z − a).

By Hilbert’s Nullstellensatz there exists n ∈ N such that q := pn ∈ I. We have

a ∈ K is a root of q ⇐⇒ there exists b ∈ K such that (a, b) ∈ V(I).

We use this in the following algorithm to compute V(I):

Algorithm algebraicSet({G1, . . . , Gr})

• Input: A generator set {G1, . . . , Gr} ⊂ K[X, Y ] of an ideal I.

• Output: The algebraic set V(I) if it is finite. Otherwise the algorithms stops with an error
message.

1: V := ∅
2: If 1 ∈ I, then return ∅
3: A := K[X] ∩ I. If A = ∅, then V(I) is not finite and we return an error message.
4: choose q ∈ A and compute the roots α1, . . . , αl of q.
5: for i = 1, . . . , l do
6: Set Hj := Gj(αi, Y ) for j = 1, . . . , r. If H1 = . . . = Hl = 0, then V(I) is not finite and we

return an error message.
7: qi(Y ) := gcd{H1, . . . ,Hr}
8: V := V ∪ {(αi, β) | β is a root of qi}
9: end for

10: return V

57
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Remark 5.1 Let I be the ideal considered in preceding algorithm. We compute a Gröbner basis B
of the ideal I with the lexicographical order X < Y . We have

1. 1 ∈ B if and only if 1 ∈ I, and

2. if q is the generator of the principal ideal A := K[X] ∩ I, then {q} = B ∩K[X].

The following algorithm computes the intersection of the projective plane curve C∗ := {C∗ = 0} and
an algebraic set V(J) where the homogeneous ideal J ⊂ K[U, V, W ] is generated by {G1, . . . , Gr}.

Algorithm projectiveAlgebraicSet({G1, . . . , Gr})

• Input: A generator set {G1, . . . , Gr} ⊂ S(K) of a homogeneous ideal J ⊂ K[U, V,W ].

• Output: The algebraic set V(J) if it is finite. Otherwise the algorithms stops with an error
message.

1: we compute the points of the form P = (a : b : 1)
2: V := {(a : b : 1) | (a, b) ∈ algebraicSet(G1(X, Y, 1), . . . , Gr(X, Y, 1))}
3: we compute the points of the form P = (a : 1 : 0)
4: Set gi := Gi(X, 1, 0) for i = 1, . . . , r. If g1 = . . . = gr = 0, then V(J) is not finite and we return

an error message.
5: p := gcd(C∗(X, 1, 0), g1, . . . , gr)
6: V := V ∪ {(a : 1 : 0) | a is a root of q}
7: If G1(1, 0, 0) = . . . = Gr(1, 0, 0), then V := V ∪ {(1 : 0 : 0)}
8: return V

We could use the preceding algorithm to compute the singular points of the projective plane curve
C∗ := {C∗ = 0}; it suffices to apply it to the polynomials C∗

U , C∗
V and C∗

W (the derivatives of C∗ with
respect to the variables U ,V and W ). Notice that it is not necessary to consider the polynomial C∗

W

to determine the singular points of the form (a : b : 1), to consider the polynomial C∗
V to determine

singular points of the form (a : 1 : 0) and to consider CW to determine if (1 : 0 : 0) is a singular
point since we can reduce the question to the affine case. Therefore it is more advantageous to use
the following algorithm:

Algorithm singularPoints(C∗)

• Input: A homogeneous polynomial C∗ ∈ K[U, V,W ].

• Output: the singular points of the curve C∗ := {C∗ = 0}.

1: C∗
U := ∂C∗/∂U , C∗

V := ∂C∗/∂V , C∗
W := ∂C∗/∂W

2: we compute the singular points of the form P = (a : b : 1)
3: V := {(a : b : 1) | (a, b) ∈ algebraicSet(C∗(X, Y, 1), C∗

U (X, Y, 1), C∗
V )(X, Y, 1)}

4: we compute the singular points of the form P = (a : 1 : 0)
5: If C∗(X, 1, 0) = C∗

U (X, 1, 0) = C∗
W (X, Y, 1) = 0, then stop with an error message since in this

case there are infinitely many singular points
6: p := gcd(C∗(X, 1, 0), C∗

U (X, 1, 0), C∗
W (X, Y, 1))

7: V := V ∪ {(a : 1 : 0) | a is a root of p}
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8: we check if P = (1 : 0 : 0) is a singular point
9: If C∗(1, 0, 0) = C∗

V (1, 0, 0) = C∗
W (1, 0, 0) = 0, then V := V ∪ {(1 : 0 : 0)}

10: return V

It is also easy to compute the points of C∗ := {C∗ = 0} of degree r:

Algorithm pointsOfDegree(C∗, r)

• Input: A homogeneous polynomial C∗ ∈ K[U, V,W ] and a positive integer r.

• Output: The points the curve C∗ := {C∗ = 0} of degree r.

1: q := #K
2: pX := Xqr −X
3: pY := Y qr − Y
4: we compute the points of the form P = (a : b : 1)
5: V := {(a : b : 1) | (a, b) ∈ algebraicSet(C∗(X, Y, 1), pX , pY )}
6: we compute the points of the form P = (a : 1 : 0)
7: p := gcd(C∗(X, 1, 0), pX)
8: V := V ∪ {(a : 1 : 0) | a is a root of p}
9: If C∗(1, 0, 0) = 0, then V := V ∪ {(1 : 0 : 0)}

10: return V

5.2 Blowing up

It is not necessary to consider the coordinate pair (x, y) when computing the infinitely close points
of order one of a point P := (a, b;x, y) of F/K. We represent the point P by [(α, β), C] where C
is the defining polynomial of (x, y).

Algorithm blowUp([(a, b), C])

• Input: A representation of a point P := (a, b;x, y) of F/K.

• Output: P with multiplicity and B(P ).

1: C0(X, Y ) := C(X + a, Y + b)
2: m := deg Init(C0)
3: If m = 1, then return([P, ∅])
4: q := Init(C0)(1, Z). Compute V := {α | α is a root of q} and set

B(P ) := {[(0, β), C [x]
0 ] | β ∈ V }.

5: If Init(C0)(0, 1) = 0, then B(P ) := B(P ) ∪ {[(0, 0), C [y]
0 ]}

5.3 Desingularisation tree

It is easy to construct the desingularisation tree of a point by using the procedure blowUp.
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Algorithm desingTreeOfPoint

desingTreeOfPoint := proc(infClsPt)

begin
B := blowUp(infClsPt);
infClsPtWithMult := B[1];

if B[2] = [] then
# simple point #
return(createTree(infClsPtWithMult, []));

else
return(createTree(infClsPtWithMult, map(B[2], desingTreeOfPoint)));

end_if;
end_proc;

To compute the desingularisation trees of all singular points of a curve we have the following

Algorithm desingTrees

desingTrees := proc()

begin
ListOfSingPts := singularPoints();
ListOfSingInfClsPts := map(ListOfSingPts, createInfClsPointFromProjPoint);
ListOfDesingTrees := map(ListOfSingInfClsPts, desingTreeOfPoint);
ListOfDesingTrees := map(ListOfDesingTrees, TreeWithExceDiv);

end_proc;

5.4 Valuations and P-adic power series expansions

Let P := (0, 0;x, y) be a simple point of F/K and C the defining polynomial of the coordinate
pair (x, y). We assume that X does not divide Init(C). In this case we have νP(x) ≤ νP(y) and by
proposition 4.1 we know that t := x is a local parameter of the place P of F/K with P ≡ P . Let
g := G(x, y) ∈ F where G ∈ K[X, Y ]. We want to compute the valuation νP(g).

We suppose that g 6= 0 and therefore it is necessary that C does not divide G. Otherwise the
algorithm enters into an infinite loops.

Algorithm Valuation(P,G)

• Input: A point P = (0, 0;x, y) of F/K where C is the defining polynomial of the coordinate
pair (x, y) and νP(x) ≤ νP(y) and a polynomial G ∈ K[X, Y ] representing g := G(x, y) ∈ F .
We suppose that C does not divide G. Otherwise the algorithm would end up in an infinite
loop.
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• Output: e = νP(g) and a where g(t) = ate +
∑

i>e ait
i is the power series expansion of g with

respect to t.

1: e := 0
2: a := G(0, 0)
3: while a 6= 0 do
4: e := e + m(0,0)(G)
5: b := −α/β where Init(C) = αX + βY {remark b = (y/x)(P)}
6: C := C [x], G := G[x]

7: C := C(X, Y + b), G := G(X, Y + b)
8: a := G(0, 0)
9: end while

10: return(e)
Proof of the algorithm: We use induction on νP(G(x, y)). We have

νP(G(x, y)) = 0 ⇔ G(x, y) ∈ O∗
P = OP ⇔ G(0, 0) 6= 0.

It is clear that in this case the algorithm return e = 0. We assume now that νP(G(x, y)) = n. We
have νP(x) = 1 and

G(x, y) = xmP (G)G[x](x, y/x).

Consequently νP(G(x, y)) = mP (G) + νP(G[x](x, y/x)). Since νP(G[x](x, y/x)) < n we can use the
induction hypothesis. This proves the correctness of the algorithm. 2

Remark 5.2 Note that a in the above algorithm is the first nonzero coefficient of the power series
expansion of g with respect to t.

If P = (a, b;x, y) is any simple point of F/K all we have to do before using the above algorithm
is:
1: C := C(X + a, Y + b), G := G(X + a, Y + b)
2: if X divides Init(C) then
3: C := C(Y, X), G := G(Y, X)
4: end if

Now it is not difficult to develop an algorithm to compute the coefficients of the parameterization
[P] of P. We compute only as many coefficients of the infinite series as we need.

Algorithm Parameterization(P, n)

• Input: A place P of F/K which is represented by a point Q = (0, 0;x, y) of F/K where C is
the defining polynomial of (x, y) and νP(x) ≤ νP(y) and an integer n.

Let P := (a : b : c) be the unique point of C∗ with P | P∗ and Γ := (x′, y′) a coordinate pair of
F/K such that P∗ ∈ Z(Γ). Let G1, G2 ∈ K[X, Y ] be two polynomials such that x′ = G1(x, y)
and y′ = G2(x, y).

• Output: The parameterization [P] of the place P (only the n first coefficients of the power
series extensions are computed).

1: x(t) := t



62 CHAPTER 5. ALGORITHMS

2: param := 0
3: while order < n do
4: b := −α/β where Init(C) = αX + βY
5: C := C [x]

6: C := C(X, Y + b)
7: order := order + 1
8: param := param + b ∗ torder

9: end while
10: y(t) := param
11: return G1(x(t), y(t)), G2(x(t), y(t), 1)) (here we assume that c 6= 0; otherwise 1 must be inserted

corresponding to the nonzero coordinate.)

Remark 5.3 In our real implementation the truncated power series x(t) and y(t) are stored so
that each time only new coefficients are computed if necessary.

5.5 Divisors

Let P := (a, b;x, y) be a point of F/K. We show how to compute local divisors (g)P of functions
g ∈ K[x, y] ⊂ F . Let G ∈ K[X, Y ] a polynomial with g = G(x, y). Recall that the local divisor
(g)P can be expressed as

(g)P = mP (G)EP +
∑

Q∈B(P )

(g(lQ))Q.

The following algorithm is based upon this equation.

Algorithm localDivisor(G, TP )

• Input: A polynomial G ∈ K[X, Y ] and TP the desingularisation tree of a point P = (a, b;x, y).

• Output: The local divisor (g)P where g = G(x, y).

1: if G(a, b) 6= 0 then
2: {g is invertible in the local ring OP and therefore also in all OP with P | P}
3: return(0)
4: end if
5: if P is a simple point then
6: n := Valuation(P,G)
7: return(n ·P) where EP = P

8: else
9: return

mP (G)EP +
∑

Q∈B(P )

localDivisor(GQ, TQ)

where GQ := G(X +a, Y +b)(lQ) (EP is the exceptional divisor of P and lQ is the exceptional
coordinate of the point Q ∈ B(P ))

10: end if
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It is clear that we must first compute the exceptional divisors of points of the desingularisation tree
before applying the localDivisor algorithm. To do this it suffices to use the TreeWithExceDiv
algorithm which is based upon the equation

EP =
∑

Q∈BP

(lQ)Q.
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Algorithm TreeWithExceDiv(TP )

• Input: A tree TP

• Output: The tree TP with exceptional divisor attached to each knot

1: if P is a simple point then
2: create the place P ≡ P and attach EP = P to the knot of P
3: else
4: TQ := TreeWithExceDiv(TQ) for all Q ∈ B(P )

{we have computed the exceptional divisors of all infinitely close points of P ; we can use the
above equation the exceptional divisor EP of P}

5: EP :=
∑

Q∈B(P ) LocalDivisor(LQ, TQ)
{where LQ := X if x is the exceptional coordinate of the point Q, otherwise LQ := Y }

6: attach the divisor EP to the knot of P .
7: end if

It is simple to compute the adjoint divisor of a point.

Algorithm adjointDivisorOfPoint(TP )

• Input: The desingularisation tree of a point P

• Output: The adjoint divisor AP of the point P .

1: return
(mP − 1)EP +

∑
Q∈B(P )

adjointDivisorOfPoint(TQ).

It is also simple to compute the intersection divisor (G) of a homogeneous polynomial G ∈
K[U, V,W ].

Algorithm intersectionDivisor(G)

• Input: A homogeneous polynomial G ∈ K[U, V,W ].

• Output: The intersection divisor (G) of G.

1: for all points P ∈ projectiveAlgebraicSet(C∗, G) do
2: if P∗ is a simple point then
3: create a place P ≡ P∗ if this has not already been done
4: n := Valuation(P∗, GP )
5: (G) := (G) + nP

6: else
7: (G) := (G) + localDivisor(GP , TP )
8: end if
9: end for
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5.6 Constant field extensions

The Brill-Noether algorithm needs in theory an algebraically closed field or at least a sufficiently
high extension of the ground field. We could use such an extension but this would not be very
practical. Sometimes we want to work with a specific constant field extension. For example we are
interested in the number of places that are rational over some constant field Fq. Also for complexity
reasons it is better to use the minimal extension which suffices to do the computations. This also
permits us to choose a distinguished element.

Let g(Z) =
∏k

i=1 gi(Z) ∈ Fq[Z] where gi are irreducible factors for i = 1, . . . , k. Assume that
there is an irreducible factor gi with deg gi(Z) > 1. The extension Fqdeg gi of Fq is the smallest
extension in which we can express the roots of gi(Z). There are deg gi roots of gi(Z) and they are
mutually conjugated by α 7→ αq. It suffices to keep only one root of gi ∈ Fq[Z].

>> groundField;
F_4

>> groundField::minpoly;
2

poly(X1 + X1 + 1, [X1], IntMod(2))

>> q := poly(Z^3+Z+1,[Z],groundField);

3
poly(Z + Z + 1, [Z], F_4)

> irreducible(q);

TRUE

The ground field F4 (F_4) is represented as F2[X1]/
〈
X2

1 + X1 + 1
〉
. The polynomial q(Z) :=

Z3 + Z + 1 is irreducible over F4[Z]. We can construct an extension in which we can represent a
root of q(Z):

>> exts := distRoots(q);

-- table( --
| 2 4 |
| _embed = [F_64, X1, X2 + X2 + X2 ], |
| 2 |
| _distRoot = X2 + X2 + 1, |
| _extDeg = 3 |
-- )

>> ext := exts[1]:

>> embeddedQ := embedPoly(q, ext[_embed]);
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3
poly(Z + Z + 1, [Z], F_64)

>> ext[_distRoot];
2

X2 + X2 + 1

>> domtype(ext[_distRoot]);

F_64

>> evalp(embeddedQ, Z=ext[_distRoot]);

0

The entry ext[_embed] determines how F_4 is embedded into F_64. We can embed an element
into the new extension with embedElem and a polynomial into the polynomial ring over the new
extension with embedPoly. We can concatenate two embeddings with succEmbed.

In the following we present the algorithms as if we calculated in the algebraically closed field K
for simplicity. Actually we always work in the smallest extension and always choose a distinguished
element.

5.7 Examples

Let us consider the projective plane curve C∗ determined by the polynomial

>> projectiveCurve;

8 5 3 4 5 4 2 3 9 6 3 3 6 9
poly(X Y + X Y Z + X Y + X Y Z + Y + Y Z + Y Z + Z , [X,Y,Z], F_2)

over finite field F2

>> groundField;
F_2

>> groundField::size;
2

Let us determine the singular points of C∗.

>> singPts := singularPoints():
>> nops(singPts);

3
>> printProjPoint(singPts[1]);

[0, 1, 1]
>> printProjPoint(singPts[2]);

2
[0, X2 + 1, 1]
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>> printProjPoint(singPts[3]);
2

[X2 + 1, 1, 0]

The point singPts[1] is rational over F_2 and the points singPts[2] and singPts[3] are rational
over F_4 (F22). The index attached to a projective point is the degree of the minimal extension
of the ground field F_2 needed to represent the point. The field F_4 was created to represent the
points singPts[2] and singPts[4]. This index is also the length of the orbit under the Frobenius
map. We always create only one point of each orbit. We see that the curve C∗ has five singular
points

P1 := (0 : 1 : 1), P2 := (0 : β : 1), P3 := (β : 1 : 0),
P4 := (0 : β2 : 1), P5 := (β2 : 1 : 0)

where β is a primitive element of F22 . The points P2 and P4 are conjugated over F2 and so are P3

and P4.
The point P1 ∈ C∗ (singPts[1]) is represented as

>> pt := singPts[1];

table(
_embed = [F_2],
_projCoords = [0, 1, 1],
_deg = 1,
_defCurve = poly(X^8*Y + X^5*Y*Z^3 + X^4*Y^5 + X^4*Y^2*Z^3 + Y^9 + Y^6*Z\

^3 + Y^3*Z^6 + Z^9, [X, Y, Z], F_2)
)

Let us blow up this point. To do that we must first create the point P1∗ of K(C∗).

>> icp0 := createInfClsPointFromProjPoint(pt);

table(
_exceDiv = 0,
_affCoords = [0, 1],
_chart = 2,
_prevEmbed = [F_2],
_embed = [F_2],
_exceCoord = None,
_G1 = poly(X, [X, Y], F_2),
_deg = 1,
_G2 = poly(Y, [X, Y], F_2),
_mult = 0,
_defCurve = poly(X^8*Y + X^5*Y + X^4*Y^5 + X^4*Y^2 + Y^9 + Y^6 + Y^3 + 1\

, [X, Y], F_2)
)

Note that the multiplicity icp0[_mult] has not been computed. The procedure blowUp gives us
the point with the multiplicity and a list of the infinitely close points.
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>> [icp0, infClsPts_icp0] := blowUp(icp0):
>> icp0[_mult];

3
>> nops(infClsPts_icp0);

1

>> icp1 := infClsPts_icp0[1];
table(

_exceDiv = 0,
_affCoords = [0, 0],
_chart = 2,
_prevEmbed = [F_2],
_embed = [F_2],
_exceCoord = X,
_G1 = poly(X, [X, Y], F_2),
_deg = 1,
_G2 = poly(X Y + 1, [X, Y], F_2),
_mult = 0,
_defCurve = poly(X^6*Y^9 + X^6*Y^5 + X^6*Y + X^5*Y^8 + X^5*Y^4 + X^5 + X\

^3*Y^6 + X^3*Y^2 + X^3*Y + X^2*Y + X^2 + X*Y^4 + Y^3, [X, Y], F_2)
)

We see that the multiplicity is of icp0 is 3 and that there is only one infinitely close point icp1 above
icp0. Note that the entries icp1[_G1] and icp1[_G2] keep track of the coordinate transformations
done when blowing up. Since icp1[_affCoords]=[0,0] the multiplicity of icp1 is the degree of
the initial form of icp1[_defCurve] (icp1 is already in the origin).

>> initForm(icp1[_defCurve]);
2

poly(X , [X, Y], F_2)

We know now that the multiplicity of icp1 is 2 and that there is only one infinitely close. Its
exceptional coordinate is Y . Let us check it.

>> [icp1, infClsPts_icp1] := blowUp(icp1):
>> icp1[_mult];

2
>> icp2 := infClsPts_icp1[1];
table(

_exceDiv = 0,
_affCoords = [0, 0],
_chart = 2,
_prevEmbed = [F_2],
_embed = [F_2],
_exceCoord = Y,
_G1 = poly(X Y, [X, Y], F_2),
_deg = 1,
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2
_G2 = poly(X Y + 1, [X, Y], F_2),
_mult = 0,
_defCurve = poly(X^6*Y^13 + X^6*Y^9 + X^6*Y^5 + X^5*Y^11 + X^5*Y^7 + X^5\

*Y^3 + X^3*Y^7 + X^3*Y^3 + X^3*Y^2 + X^2*Y + X^2 + X*Y^3 + Y, [X, Y], F_2)
)

Since icp2[_affCoords] = [0, 0] and

>> initForm(icp2[_defCurve]);
poly(Y, [X, Y], F_2)

the point icp2 is a simple point. Let us determine the exceptional divisors and the adjoint divisor.

>> desingTree_icp0 := desingTreeAtPointLocal(icp0):
>> desingTree_icp0 := TreeWithExceDiv(%):
>> drawTree(%);

"UU(L1).."

We see that a symbol L1 has been created. It represents the place corresponding to the simple
point icp2. The exceptional divisors of icp0 and icp1 are respectively

>> desingTree_icp0[_knot][_exceDiv];
3 L1

>> desingTree_icp0[_branches][1][_knot][_exceDiv];
2 L1

The local adjoint divisor of icp0 is

>> AdjDivOfTree(desingTreeOfIcp0);
8 L1

We compute now all the desingularisation trees with desing. The adjoint divisor of the curve C∗ is

>> adjointDivisor;
8 L1 + 8 L2 + 3 L3 + 3 L4

>> printDivisor(adjointDivisor);
2 2 6

8 L1 + 8 L2 + 3 L4 + 3 L3
>> degOfDivisor(adjointDivisor);

48

The genus of the function field K(C∗) is ((n− 1)(n− 2)− degA)/2 = 4 where n = 9 is the degree
of the curve C∗.

>> genus;
4

We get a canonical divisor of K(C∗) by
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>> K := canonicalDivisor();
L1 + L2 + 3 S1

>> printDivisor(K);
2

L1 + L2 + 3 S1
>> degOfDivisor(K);

6

We know that the degree of a canonical divisor is 2g − 2 = 4 where g = 4 is the genus of K(C∗).
The dimension of the vector space L(K) associated to a canonical divisor K is always g.

basis := brillnoether(K):
>> G0 := basis[1];

6 3 9
poly(Y Z + Z , [X, Y, Z], F_2)

>> [G1,G2,G3,G4] := basis[2]:

9 6 3
[Z + Y Z ,

8 6 2 3 5 6 2 2 2 5 2 5 2
X Z + X Y Z + X Y Z + X Y Z + X Y Z + X Y Z ,

8 2 7 2 7 6 2 2 3 4 3 2 4
Y Z + X Z + Y Z + X Y Z + X Y Z + X Y Z ,

9 8 3 6 5 4 6 3 3 6 3 6 2 6
Y + X Y + X Y + X Y + X Y + X Z + Y Z + X Y Z

5 3 3 3 3
+ X Y Z + X Y Z ]

>> interDivG0 := intersectionDivisor(G0):
>> interDivG1 := intersectionDivisor(G1):
>> interDivG2 := intersectionDivisor(G2):
>> interDivG3 := intersectionDivisor(G3):
>> interDivG4 := intersectionDivisor(G4):
>> -K;

- L1 - L2 - 3 S1
>> interDivG1-interDivG0;

0
>> interDivG2-interDivG0;

2 L4 - L1 - L2 - S1
>> interDivG3-interDivG0;

L4 - L1 - L2 - 2 S1 + S2 + S6
>> interDivG4-interDivG0;

L3 - L1 - L2 - 3 S1
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>> degOfDivisor(%);
0

We see that {G1/G0, . . . , G4/G0} is a basis of L(K).
Let us consider the curve over F22 .

>> groundField;
F_4

>> projectiveCurve;
8 5 3 4 5 4 2 3 9 6 3 3 6 9

poly(X Y + X Y Z + X Y + X Y Z + Y + Y Z + Y Z + Z ,
[X, Y, Z] , F_4)

The adjoint divisor is

>> printDivisor(adjointDivisor);
3 3

8 L1 + 8 L2 + 8 L3 + 3 L5 + 3 L4 + 3 L7 + 3 L6

With respect to the standard coordinate triple we have the following divisors:

>> printDivisor(intersectionDivisor(poly(X,[X,Y,Z],groundField)));
3 L1 + 3 L2 + 3 L3

>> printDivisor(intersectionDivisor(poly(Y,[X,Y,Z],groundField)));
9 S1

>> printDivisor(intersectionDivisor(poly(Z,[X,Y,Z],groundField)));
3 3

L5 + L4 + L7 + L6 + S1

S1 corresponds to the simple point

>> printProjPoint(ListOfSimplePts[1]);
[1, 0, 0]

of the curve C∗. Consider the divisor 9*S1. Regarding the intersection divisors (X), (Y ) and (Z)
above we see that X3Y Z3 is an interpolating form for A+ 9S1.

>> G0 := poly(X^3*Y*Z^3,[X,Y,Z],groundField):
>> interDivG0 := intersectionDivisor(G0);

9 L1 + 9 L2 + 9 L3 + 3 L4 + 3 L5 + 3 L6 + 3 L7 + 12 S1
>> interDivG0 - (adjointDivisor + 9*S1);

L1 + L2 + L3 + 3 S1
>> denoms := interpolatingForms(interDivG0 - 9*S1, 7):
>> nops(denoms);

6
>> map(denoms, expr);

3 4 3 3 4 3 2 5 4 2 2 3 2 3 2 2
[X Z , X Y Z , X Z , X Z + X Y Z + X Y Z + X Y Z ,

7 6 2 4 2 4 4 2
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Z + Y Z + X Y Z + X Y Z + X Y Z,

7 6 6 6 6 3 4 5 2
Y + X Y + X Y + X Z + Y Z + X Y + X Y ]

We see that the dimension of dimL(9S1) = 6, according to the Riemann-Roch theorem dimL(mS1) =
m− g + 1 for all m > 2g − 2 = 6. The function field K(C∗) has

>> plcs := placesOfDegreeOne();
[S7, S8, S9, L1, L2, L3, L5, L7, S1, S2, S10, S3, S4, S5, S6]

>> nops(plcs);
15

places of degree one. Let P be the list of all places of degree one except S1. We can construct the
geometric Goppa-Code CL(P, 6S1)

>> P := [op({op(plcs)} minus {S1})];
[S7, S8, S9, L1, L2, L3, L5, L7, S2, S3, S10, S4, S5, S6]

>> goppaCode([G0,denoms], P);
+- -+
| 1, 1, X1 + 1, X1, X1 + 1, X1 |
| X1, 1, X1, X1, X1 + 1, X1 + 1 |
| 1, 1, 1, 0, 1, 1 |
| 1, 1, 1, 1, 1, 1 |
| X1, 1, 1, X1 + 1, X1 + 1, 1 |
| X1 + 1, 1, 1, X1, X1, 1 |
| 1, 1, X1 + 1, 0, X1, X1 |
| 1, 1, X1, 0, X1 + 1, X1 + 1 |
| X1, 1, X1 + 1, 1, 1, X1 |
| X1 + 1, 1, 1, 0, X1 + 1, 1 |
| X1 + 1, 1, X1 + 1, X1 + 1, X1, X1 |
| 1, 1, X1, X1 + 1, X1, X1 + 1 |
| X1 + 1, 1, X1, 1, 1, X1 + 1 |
| X1, 1, 1, 0, X1, 1 |
+- -+

>> groundField::minpoly;
2

poly(X1 + X1 + 1, [X1], IntMod(2))



Chapter 6

Absolute factorization of bivariate
polynomials

6.1 Introduction

We describe the algorithm for factoring bivariate polynomials over an algebraically closed field
proposed by D. Duval in [Duv91]. Let K be a perfect field and K an algebraic closure of K. Let
C ∈ K[X, Y ] be a reducible square-free polynomial. Consider its factorization

C =
r∏

i=1

C(i), (6.1)

where the polynomials C(i) ∈ K[X, Y ] are irreducible for i = 1, 2, . . . , r. The irreducible components
of the affine plane reduced curve 1

C :=
{
P ∈ A2 | C(P ) = 0

}
are the irreducible curves

C(i) = {P ∈ A2 | C(i)(P ) = 0}
defined by the irreducible factors of the polynomial C:

C = C(1) ∪ . . . ∪ C(r).

The geometric question of determining the irreducible components of the curve C is equivalent to
the algebraic question of factoring the bivariate polynomial C over the algebraically closed field K.

6.2 The function ring of a reduced curve

The algorithm is based on some geometric invariants of the curve C. For the basic concepts of
algebraic geometry see Chapter 3 “Regular and rational functions” in [Kun85]. Each irreducible
factor C(i) of C defines a plane irreducible curve

C(i) := {P ∈ A2 | C(i)(P ) = 0}.
1By a curve we mean an equidimensional algebraic set whose irreducible components have dimension 1 (i.e. are

irreducible curves).

73
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with the coordinate ring

K[C(i)] := K[X, Y ]/
〈
C(i)

〉
and the function field

K(C(i)) :=
{

f/g | f, g ∈ K[C(i)], g 6= 0
}

.

The square-free polynomial C defines an affine plane reduced curve

C :=
{
P ∈ A2 | C(P ) = 0

}
with the coordinate ring

K[C] := K[X, Y ]/ 〈C〉 .

As a rational function r on C is defined on a dense open subset U of C (domain of definition) it must
have the form r = f/g with f ∈ K[C] and g ∈ K[C]∗ where K[C]∗ is the multiplicatively closed
subset of non-zerodivisors of K[C]. The denominator g must not be a zerodivisor since otherwise
the domain of definition would not be dense in C. The function ring of C will be denoted by K(C).
It is the total quotient ring of K[C] 2 (see also Chapter 2 “Localization” in [Eis95])

K(C) := K[C]K[C]∗ =
{
f/g | f ∈ K[C] and g ∈ K[C]∗

}
.

It is the “biggest” localization such that the natural map ι

ι :
{

K[C] −→ K(C)
g 7→ g/1

is an injection. Let I be an ideal of K(C). The correspondence I 7→ ι−1(I) is a bijection between
the prime ideals of K(C) and the prime ideals of K[C] not meeting K[C]∗ (Proposition 2.2 [Eis95]).
The latter are exactly the prime ideals C

(i) := C(i) + 〈C〉 ∈ K[C].
The function ring K[C] has exactly r prime ideals which are

C(i) := ι(C(i)) = (C(i)
/1)K(C).

Every ideal J of K[C] with J ) C
(i) meets K[C]∗ so that 1 ∈ ι(J) and consequently ι(J) = K(C).

The ideals C(i) are therefore maximal so that C(i) + C(j) = K(C) for i 6= j and their intersection⋂r
i=1 C(i) is the zero ideal as the intersection

⋂r
i=1 C

(i) = C
(1)

C
(2)

. . . C
(r) = 0 is the zero ideal in

K[C] and localization preserves finite intersections (Corollary 2.6 in [Eis95]). We are now in the
situation of the Chinese Remainder Theorem which establishes the isomorphism

K(C) ∼= K(C)/C(1) × . . .×K(C)/C(r).

We can also obtain this isomorphism directly (see page 85 in [Kun85]) as the coordinate ring
K[C] 6= 0 is a reduced ring with finitely many minimal prime ideals C

(1)
, C

(2)
, . . . , C

(r) which
correspond to the irreducible components of C.

2For the irreducibles curves C(i) we obtain K(C(i)) =
n

f/g | f, g ∈ K[C(i)], g 6= 0
o

= K[C(i)]K[C(i)]∗
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Since the function fields K(C(i)) are K-isomorphic to the fields K(C)/C(i) for i = 1, . . . , r we
have the K-algebra isomorphism

ϕ :

{
K(C) −→ K(C(i))× . . .×K(C(i))
G(x,y)
H(x,y) 7→

(
G(x(1),y(1))

H(x(1),y(1))
, . . . , G(x(r),y(r))

H(x(r),y(r))

) (6.2)

where G, H ∈ K[X, Y ] with gcd(H,C) = 1 and where x, x(1), . . . , x(r) and y, y(1), . . . , y(r) are the
images of X and Y in K[C],K[C(1)]), . . . ,K[C(r)]). We can also obtain the isomorphism ϕ directly
using Proposition 4.23 in [Kun85].

6.3 Places and divisors of the function ring

Since the function ring of a reduced curve is isomorphic to the direct product of function fields
of irreducibles curves we can generalize the notions of places and divisors of an algebraic function
field in one variable to the function ring of a curve. More details on these notions can be found in
chapter 1. Nevertheless let us repeat briefly some basic results.

A valuation ring of an algebraic function field in one variable F with ground field K is a ring
O such that

1. K ( O ( F ,

2. if x ∈ F \ O then x−1 ∈ O.

Every valuation ring is a local ring. A place of F is the unique maximal ideal of a valuation ring.
The set of places is denoted by PF/K . For every P ∈ PF/K there is a unique valuation ring which
has P as its maximal ideal. We will denote this valuation ring by OP. Every place P has a
remarkable element t such that P = tOP. This element is called a local parameter. Every element
v ∈ F can be written in the form

v = utn

where n ∈ Z and u ∈ O∗
P := OP \P. We can associate to every place P the function νP : F −→

Z ∪ {∞} defined by

νP(v) :=
{

n v 6= 0 and v = tnu where u ∈ O∗
P,

∞ v = 0
. (6.3)

The function νP is well defined and does not depend on the choice of the local parameter t. It is a
discrete valuation of F because it is surjective and satisfies the following three conditions:

1. νP(u) = ∞⇔ u = 0,

2. νP(uv) = νP(u) + νP(v) for all u, v ∈ F ,

3. νP(u + v) ≥ min{νP(u), νP(v)} for all u, v ∈ F (triangle inequality).

We will consider the function fields of each irreducible component C(i) of C.

Definition 6.1 (Place) A place of K(C) is a place of the function field K(C(i)) of one irreducible
component C(i) of C. The set of places of K(C) will be denoted by P.
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Let P be a place of K(C). Let iP ∈ {1, . . . , r} be the unique index such that P is a place of K(C(i))
3 and let us consider the corresponding discrete valuation:

ν
(iP)
P : K(C(i)) −→ Z ∪ {∞}.

We can define a map

νP :

{
K(C) −→ Z ∪ {∞}

u 7→ ν
(iP)
P (u(iP))

(6.4)

by projecting K(C) onto K(C(i)). This map is surjective and satisfies the following three properties:

1. νP(u) = ∞⇔ u(iP) = 0,

2. νP(uv) = νP(u) + νP(v) for all u, v ∈ K(C),

3. νP(u + v) ≥ min{νP(u), νP(v)} for all u, v ∈ K(C).

The map νP does not satisfy all the properties of a discrete valuation because there is u ∈ K(C)\{0}
with u(iP) = 0 and therefore νP(u) = ∞ even though u 6= 0. Nevertheless we will use the following
definition:

Definition 6.2 (Discrete valuation) A discrete valuation of K[C] is a surjective map

ν : K(C) −→ Z ∪ {∞}

satisfying the following properties:

1. there is an index i ∈ {1, . . . , r} such that ν(u) = ∞ if and only if u(i) = 0,

2. νP(uv) = νP(u) + νP(v) for all u, v ∈ K(C),

3. νP(u + v) ≥ min{νP(u), νP(v)} for all u, v ∈ K(C).

Let ν be a discrete valuation of K(C). The index i for which ν(u) = ∞ if and only if u(i) = 0 is
unique. Since ν is surjective there is u ∈ K(C) such that ν(u) 6= ∞ and therefore u(i) 6= 0. Let
j 6= i, 1 ≤ j ≤ r. We can always choose u ∈ K(C) such that u(j) = 0 and ν(u) 6= ∞. We know that
a place of a function field is uniquely determined by a discrete valuation. The following proposition
is therefore evident.

Proposition 6.1 For every place P ∈ P the map νP is discrete valuation of K(C). Conversely if
ν : K(C) → Z ∪ {∞} is a discrete valuation of K(C) then there is a unique place P ∈ P such that
ν = νP.

We can now generalize the notion of a divisor to the function ring of a reduced curve.

Definition 6.3 (Divisor) A divisor of K(C) is a formal sum

D :=
∑
P∈P

nPP

where nP ∈ Z ∪ {∞}. We denote the set of all divisor of K(C) by DC.
3Every place P of K(C) corresponds to a point of the function ring K(C) (see Definition 6.7). This determines

the index iP in a unique way. The uniqueness here should be understood via this representation.
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Contrary to a divisor of a function field the support of a divisor D :=
∑

P∈P nP of the function
ring K(C) is not necessarily finite. This can also occur for the degree of D which is defined by

deg D :=
∑
P∈P

nP

and which takes values from Z∪ {∞}. We allow this since the function ring K(C) contains zerodi-
visors.

The set of divisors DC is partially ordered by the relation

D ≥ D′ ⇐⇒ nP ≥ n′P for all P ∈ P

where D :=
∑

P∈P nP and D′ :=
∑

P∈P n′P.
We define the sum of D and D′ by

D + D′ :=
∑
P∈P

(nP + n′P)P

where the addition in Z ∪ {∞} is the usual addition in Z if both nP, n′P ∈ Z and nP + n′P = ∞ if
nP = ∞ or n′P = ∞. We denote the neutral element of the addition in DC by 0. We conclude from

deg(D + D′) = deg(D) + deg(D′)

that D is invertible DC if and only if deg(D) < ∞. The set DC endowed with this addition is not
a group but only a monoid.

Remark 6.1 The monoid DC contains elements which are not regular. Let A be a divisor such
that A+D = A+D′. If deg(A) < ∞ then D = D′. But if deg(A) = ∞ it can happen that D 6= D′.

It is now straightforward to generalize the concepts of principal divisors and of vector spaces
associated to divisors to function rings.

Definition 6.4 (Principal divisor) Let u ∈ K(C). We call

(u) :=
∑
P∈P

νP(u)P

the principal divisor of the function u.

There are principal divisors of infinite degree: these are the principal divisor of zerodivisors of
K(C). On the contrary, if u ∈ K(C)∗, then deg(u) = 0. Let D be a divisor of K(C). It is easily
verified that

L(D) := {u ∈ K(C) | D ≥ −(u)} (6.5)

is a finite-dimensional K-vector space. The absolute factorization algorithm proposed in [Duv91]
relies on the following proposition:

Proposition 6.2 (See [Duv91]) Let r be the number of irreducible components C(i) of C then

1. dimK L(0) = r,
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2. dimK L(−nP) = r − 1 for every place P ∈ K(C) and for every integer n > 0.

Proof: Let D be a divisor of K(C) with deg(D) < ∞. It is obvious that

L(D) ∼= L(D(1))× . . .× L(D(r))

via the K-algebra isomorphism K(C) ∼= K(C(i)) × . . . × K(C(i)). The K-vector spaces L(D(i)) ⊂
K(C(i)) have all a finite dimension and dimK L(D) =

∑r
i=1 dimK L(D(i)). Especially dimK L(0) =∑r

i=1 dimK L(0(i)) = r because the dimension of the vector space associated to the zero divisor in
a function field is 1. We can suppose without loss of generality that P is a place of C(1) and let
n > 0. It is obvious that u ∈ L(−nP) if and only if u(1) = 0 and u(i) ∈ K for i 6= 1 and therefore
dimK L(−nP) = r − 1. 2

Remark 6.2 (Absolute factor) Let Fi ∈ K[X, Y ] for i = 1, . . . , r − 1 and G ∈ K[X, Y ] be such
that

Fi/G ∈ L(−P).

This means that F mod C(1) = 0 and consequently Fi are multiples of C(1). By calculating
gcd(C,F1, . . . , Fr−1) we obtain an absolutely irreducible factor.

6.4 Local rings of points of a reduced curve

Let C := {C = 0} be an affine plane reduced curve and P ∈ C. We will study the local properties of
C, that is the intrinsic properties of points of the curve C. It is evident that such properties should
only depend on the components passing through P . At first glance it may seem that

K[C]P := {f/g | f ∈ K[C], g ∈ K[C]∗ and g(P ) 6= 0} ⊂ K(C)

is the right choice for the local ring of the point P of the curve C. If the curve C is irreducible,
then the coordinate ring K[C] is integer and K[C]P is its localization in the maximal ideal formed
by elements g ∈ K[C] such that g(P ) = 0. But if C is a reducible curve then it turns out that the
ring K[C]P is not necessarily local.

Proposition 6.3 Let C be an affine plane reduced curve, C(1), . . . , C(r) its irreducible components
and P ∈ C. Then K[C]P is a local ring if and only if P ∈

⋂r
i=1 C(i).

Proof: Consider the ideals I(i) := C
(i)

K[C]P for i = 1, . . . , r. Observe that the ideals I(i) are prime
such that {0} ( I(i) ( K[C]P and if u ∈ K[C]P \ ∪r

i=1I
(i), then u is invertible in K[C]P . Consider

now the ideal
MP := {f/g | f,∈ K[C], h ∈ K[C]∗, f(P ) = 0 and g(P ) 6= 0}.

The ideal MP is maximal and for i = 1, . . . , r we have

P ∈ C(i) =⇒ I(i) ⊂ MP

Suppose that P ∈ ∩r
i=1C(i) and let u ∈ K[C]P \ MP . Since P ∈ ∩r

i=1C(i) we have u /∈ I(i) for
i = 1, . . . , r and consequently u is invertible in K[C]P . The ideal MP is then maximal since it is
exactly the set of elements which are not invertible in K[C]P . Conversely, suppose that there exist
i such that P /∈ C(i). Then C

(i)
/∈ MP and consequently I(i) 6⊂ MP , i.e. MP is not the unique
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maximal ideal. 2

This is not unexpected when we recall that K(C) is the ring of “global” functions, that is functions
defined on a dense subset of C which do not allow us to study the local properties of C.

Let us introduce some notation which will be very useful in the following. We associate to a
subset S of {1, 2, . . . , r} the polynomial

C(S) =
∏
i∈S

C(i)

and the curve
C(S) := {C(S) = 0}.

We also associate to S the K-homomorphism

ϕ(S) : K(C) → K[C(S)]

which is the projection of K(C) onto K[C(S)] defined via the isomorphism ϕ. To every point P ∈ C
we associate the support of the point P

SP := {i ∈ {1, 2, . . . , r} | P ∈ C(i)}.

If #SP = 1, then P is the point of only one component of C and we say the point P is isolated. We
denote C(P) the unique irreducible component such that P is a place of K(C(P)).

Definition 6.5 Let P be a point of C and SP the support of P . The ring

OP (C) := {f/g | f ∈ K[C(SP )], g ∈ K[C(SP )]∗ and g(P ) 6= 0}

is called the local ring of the point P .

By preceding proposition we know that OP (C) is a local ring. Its maximal ideal is

MP (C) := {f/g | f ∈ K[C(SP )], g ∈ K[C(SP )]∗, f(P ) = 0 and g(P ) 6= 0}.

It may seem that the above definition of a local ring OP (C) is not useful since the factorization of
C is not known. The following proposition shows that it is not necessary to know the factorization
of C in order to describe the ring OP (C). We can do it by passing from the local ring of a point
P ∈ A2 defined by

OP (A2) := {F/G | F,G ∈ K[X, Y ] and G(P ) 6= 0}.

Proposition 6.4 Let P be a point of the plane affine reduced curve C := {C = 0}. Then

OP (C) ∼= OP (A2)/COP (A2).

Proof: Let us denote by F and G the residual images of, respectively, F,G ∈ K[X, Y ] in K(C(SP )) =
K[X, Y ]/

〈
C(SP )

〉
. The map

ϕ :
{
OP (A2) → OP (C)

F/G 7→ F/G

is a K-homomorphism. We have kerϕ = C(SP )OP (A2). Set C ′ := C/C(SP ) ∈ K[X, Y ]. Since
C ′(P ) 6= 0 it is clear that C ′ ∈ OP (A2) is invertible in OP (A2) and consequently ker ϕ = C ′ ker ϕ =
COP (A2). The homomorphism ϕ is surjective. Now we have OP (C) ∼= OP (A2)/COP (A2). 2

One of the most important properties of a point P ∈ C is the multiplicity. The multiplicity of an
affine plane reduced curve is defined like in the irreducible case.
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Lemma 6.5 Let C(1), . . . , C(r) be the irreducible components of C and P ∈ C. We have

mP (C) =
r∑

i=1

mP (C(i)).

Let CX and CY denote the derivatives of C with respect to X and Y . It is clear that

mP (C) = 1 ⇐⇒ CX(a, b) 6= 0 or CY (a, b) 6= 0.

The right side of this equivalence corresponds to the definition of a simple point of an affine plane
curve. If P is simple, then it is clear that only one component of C passes through P . In this case
C(SP ) is an irreducible curve and OP (C) is a discrete valuation ring of the function field K(C(SP )).

Proposition 6.6 The multiplicity of a point P ∈ C depends uniquely on the local ring OP (C).
Indeed, it can be show that there exists a sufficiently big N such that for all n ≥ N

mP (C) = dimK MP (C)n/MP (C)n+1

where MP (C) is the maximal ideal of OP (C).

Proof: [Per95], Proposition 4.6 on page 113. 2

6.5 Points of the function ring

We generalize in this section the notions coordinate pair and point to the function ring K(C) of a
plane reduced curve.

Definition 6.6 (Coordinate pair of K(C)) Let K(C) be the function ring of the plane reduced
curve C. A coordinate pair of K(C) is a pair Γ := (x, y) satisfying the following properties:

1. the regular elements of K[x, y] are invertible in K(C), and

2. the total quotient ring of K[x, y] is K(C).

A defining polynomial of Γ = (x, y) is the polynomial CΓ ∈ K[X, Y ] of lowest degree such that
CΓ(x, y) = 0. We associate to the coordinate pair Γ the affine plane curve CΓ := {CΓ = 0}.

Definition 6.7 (Point of K(C)) Let K(C) be the function ring of the reduced curve C. A point
of K(C) is a pair P := (a, b;x, y) such that

1. Γ := (x, y) is a coordinate pair of K(C) with the defining polynomial CΓ and

2. (a, b) ∈ CΓ := {CΓ = 0}.

If C(1), . . . , C(r) are the irreducible components of C and C(1)
Γ , . . . , C(r)

Γ are the irreducible components
of CΓ such that C(i) −→ C(i)

Γ
4 for i = 1, . . . , r we call

SP := {i | (a, b) ∈ C(i)
Γ }

the support of P . The multiplicity of P is multiplicity m(a,b)(CΓ) of the point (a, b) ∈ CΓ.

4We mean by C(i) −→ C(i)
Γ that we obtain C(i)

Γ by a sequence of translations and strict transformations from C(i)

when we blow up a point of C. Every point of K(C) which we work with corresponds either to a point of C or to

a point obtained by blowing up. Therefore the notation C(i) −→ C(i)
Γ is well-defined (every transformation can be

“traced back”).
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This definition generalizes of the notion point of a function field to function ring of affine plane
reduced curve. The notion of point of F of a given function field permits to fix F and to compare
in F the local rings of points of different curves having a function field which is isomorphic to F .
We will do the same for the function ring K(C). But this will be more delicate since the local ring
of a point P of the reduced curve C is not necessarily a subring of K(C) but only of K(C(SP )) where
S is the support of the point of P .

Definition 6.8 Let P := (a, b;x, y) be a point of K(C) and SP the support of P . The local ring OP

of the point P is the subring of K(C(SP )) which is isomorphic to the local ring O(a,b)(CΓ) ⊂ K(CSP
Γ ).

We denote by MP the maximal ideal of OP where Γ = (x, y).

Let P be a point of K(C) and SP be the support of P . It will be useful to consider the element
ϕ(SP )(u) ∈ K(C(SP )). If ϕ(SP )(u) ∈ OP we write u ∈ OP . Similarly, if P is a place of K(C) we
write u ∈ OP (resp. u ∈ P) when ϕ(SP )(u) ∈ OP (resp. ϕ(SP )(u) ∈ P). If u ∈ OP, then the unique
α ∈ K such that u− α ∈ P is called the evaluation of u at the place P. It is denoted by u(P).

The following proposition is equivalent to the proposition 4.3 when the curve is irreducible.

Definition 6.9 Let P := (a, b;x, y) be a point of K(C). Let Q be a point (resp. P a place) of
K(C). We say Q (resp. P) is above P , denoted by Q | P (resp. P | P ) if

x− a ∈MQ and y − b ∈MQ (resp. x− a ∈ P and y − b ∈ P ).

If the curve is irreducible we know there are at least one and at most finitely many places above
P . It is also clear that this is also true when the curve is reduced.

6.6 Blowing-up points

Strict transforms, exceptional coordinates, and monoidal transformations are defined like in the
irreducible case. If C =

∏r
i=1 C(i), then C [x] =

∏r
i=1 C(i)[x]

and C [y] =
∏r

i=1 C(i)[y]

. We conclude
that if C is not divisible by X (resp. Y ), then C is irreducible if and only if C [x] (resp. C [y]) is
irreducible. Moreover, K(C) ∼= K(C [x]) (resp. K(C) ∼= K(C [y]). Moreover, we have the following
proposition.

Proposition 6.7 Let Γ := (x, y) be a coordinate pair of K(C) and C the defining polynomial of Γ.
If C is not divisible by X (resp. Y ) then (x, y/x) (resp. (x/y, y)) is coordinate pairs of K(C) with
C [x] (resp. C [y]) as defining polynomial.

Proof: We show the proposition for (x, y/x). Suppose that X does not divide C. It is clear that
if (x, y/x) is a coordinate pair then C [x] is the defining polynomial. Since K[x, y] ⊂ K[x, y/x] it
suffices to show that every regular element of K[x, y/x] is invertible in K(C) because it is clear
that in this case the total quotient ring of K[x, y/x] is equal to K(C). Let g be a regular element
of K[x, y/x]. Then there exists n ∈ N such that g′ := xng ∈ K[x, y]. The element g′ is regular in
K[x, y] since x is regular in K[x, y]. Therefore g′ is invertible in K(C) and also g = g′/xn. 2

Suppose that P = (0, 0;x, y) and let C(X, Y ) ∈ K[X, Y ] be the defining polynomial of the coor-
dinate pair (x, y). Let Init(C) be the initial form of C and m := mP > 0 the degree of Init(C).
Consider its factorization

Init(C) =
m∏

i=1

(αiX + βiY ).



82 CHAPTER 6. ABSOLUTE FACTORIZATION OF BIVARIATE POLYNOMIALS

Let (x, y1) (resp. (x1, y)) be the monoidal transform of (x, y) with respect to the exceptional
coordinate x (resp. y) which have C [x] (resp. C [y]) as defining polynomials. Let H = C − Init(C).
Then l := deg Init(C) > m and we can write

C [x] =
m∏

i=1

(αi + βiY ) + X(l−m)H [x]

and

C [y] =
m∏

i=1

(αiX + βi) + Y (l−m)H [y].

Now let P ∈ PF be a place dominating P (recall that in this case x, y ∈ P by proposition 4.3). By
the definition of a valuation ring we have y1 = y/x ∈ OP or x1 = x/y ∈ OP.

1. If y1 ∈ OP, then

0 = 0(P) = C [x](x, y1)(P) =
m∏

i=1

(αi + βiy1(P)) = Init(C)(1, y1(P))

and consequently there exists i such that βi 6= 0 and y1(P) = −αi/βi. Therefore

PP := (0,−αi/βi;x, y1).

2. If y1 /∈ OP, then x1 ∈ P and x1(P) = 0. We have

0 = 0(P) = C [y](x1, y)(P) =
m∏

i=1

(αix1(P) + βi) =
m∏

i=1

βi

and consequently there exists i such that βi = 0. Therefore

PP := (0, 0;x1, y).

Note that the values −αi/βi are the distinct roots of Init(C)(1, Y ). There exists i such that βi = 0
if and only if Init(C)(0, 1) = 0 which is equivalent to say that X divides Init(C). More precisely,
we have

B(P ) := {(0, γ;x, y1) | γ ∈ K, Init(C)(1, γ) = 0} ∪B∞(P )

where

B∞(P ) =
{
{(0, 0;x1, y)} if Init(C)(0, 1) = 0

∅ otherwise
.

Proposition 6.8 Let P be a point of K(C). Then

1. B(P ) = {PP | P | P},

2. for every place above the point P we have

P | PP and PP | P.
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Proof: Let Q ∈ B(P ) and suppose without loss of generality that P = (0, 0;x, y) and Q = (0, γ;x, y)
where y1 := y/x. It is clear that x ∈ MQ and y = xy1 and therefore Q is above P . We will show
that there exists a place P such that Q = P to finish the proof. Let C be the defining polynomial
of (x, y). By the definition of Q we have Init(C)(1, γ) = 0. So there exists an irreducible factor
C ′ of C such that Init(C ′)(1, γ) = 0. Let C′ := {C ′ = 0} which is an irreducible component of
C. Let us denote by x′, y′ and y′1 the projections of, respectively, x, y and y1 onto K(C′). Then
P ′ := (0, 0;x′, y′) and Q′ := (0, γ;x′, y′1) ∈ B(P ′) are points of the function field K(C′). There
exists a place P of K(C′) such that P ⊂MQ′ and therefore Q′ := P ′P. Since P is a place of K(C)
by definition it is clear that Q′ = P ′P implies Q = PP. 2

Proposition 6.9 Let P be a point of K(C) and P a place dominating the point P . Then there
exists N ∈ N such that for n ≥ N the point PP is an isolated point of K(C).

Proof: There is nothing to show if the curve C is irreducible. Let C(1), . . . , C(r) be the r ≥ 2
irreducible components of C. Suppose that P = (0, 0;x, y). Let C be the defining polynomial
of (x, y) and C(1), . . . , C(r) be the r irreducible factors of C (in the order corresponding to the
irreducible components C(i)). Suppose that P is a place of K(C(i)) and set

G1(X, Y ) := C/C(1) =
r∏

i=2

C(i) ∈ K[X, Y ].

If G1(0, 0) 6= 0 then it is clear that the point P is isolated and the proof is finished. Otherwise
let Q := PP and suppose that Q = (0, γ;x, y1) where y1 := y/x. Recall that C [x] is the defining
polynomial of the coordinate pair (x, y). Set

G2(X, Y ) := G
[x]
1 = C [x]/C(1)[x]

.

If G2(0, γ) 6= 0, then Q is isolated and the proof is finished. Otherwise consider the functions

g1 := G1(x, y) and g2 := G2(x, y1).

They are linked with each other by the relation

g1 = xmg2

where m := deg Init(G1). Consequently νP(g1) > νP(g2) since m > 0 and νP(x) > 0. We replace
P by Q which move to the origin and repeat the step. We find g3 ∈ K(C) with νP(g3) > νP(g2).
After a finite number of iterations, say N , we find gN such that νP(gN ) = 0 and consequently the
point PP(n)

is isolated for n ≥ N . 2

Corollary 6.10 Let P be a point of K(C) and P a place dominating the point P . Then there exists
N ∈ N such that for n ≥ N the point PP is simple.

Proof: We know that this is true when the curve C is irreducible. This already suffices to prove the
corollary since by the preceding lemma we can suppose that P is isolated and in this case the local
ring OP is contained in the function field of the irreducible component passing through P . 2

The desingularisation tree is defined like in the irreducible case.



84 CHAPTER 6. ABSOLUTE FACTORIZATION OF BIVARIATE POLYNOMIALS

6.7 Divisors

Exceptional, local, adjoint and intersection divisors are defined like in the irreducible case. The
following proposition gives us a sufficient condition for applying the Max Noether’s Fundamental
Theorem which the Brill-Noether algorithm is based upon. We already know that this proposition
is true for irreducible curves and the proof is much simpler than that for reducible curves. We
consider a singular point P of a curve C to pinpoint this difference. If C is irreducible, then the
local rings of all infinitely close points of P are contained in the function field. The proof is then
based upon an element contained in the intersection of all these local rings. But if the curve C
is reducible the point may not be isolated and then the local rings of the infinitely close points
of P are not all necessarily contained in the same function ring and it is not possible to take the
intersection of these local rings.

Proposition 6.11 Let P := (0, 0;x, y) be a point F/K and suppose that X does not divide Init(C)
where C is the defining polynomial of the coordinate pair (x, y). Then the ring OP [y1] is a semi-local
ring and its maximal ideals correspond bijectively to the points of B(P ).

Proof: We already know that this is true for the absolutely irreducible case (see proposition 4.12).
By projecting on the function fields of the absolutely irreducible components it is not difficult to
prove that this is also true for the reducible case. 2

Proposition 6.12 Let C := {C = 0} be a reduced curve, P be a point of K(C) and u ∈ K(C).
Then

(u)P ≥ AP =⇒ u ∈ OP .

Proof: We use induction on N := degAP . If N = 0 then P is a simple point and (u)P = νP(u)P
where P ≡ P . By assumption we have νP(u) ≥ 0 and consequently u ∈ OP = OP . Let P
be singular. We assume that the proposition is true for all n < N . We suppose without loss
of generality that all components of C pass through P = (0, 0;x, y) and that X does not divide
Init(C). In this case x is invertible in K(C) and

xmP−1OP [y1] ⊆ OP

where mP is the multiplicity of the point P and y1 := y/x. It is sufficient to show that v :=
u/xmP−1 ∈ OP [y1]. Let C ′ := C [x] be the defining polynomial of (x, y1) and G, H ∈ K[X, Y ] such
that

v =
G(x, y1)
H(x, y1)

.

If H(Q) 6= 0 for all Q ∈ B(P ) then the proof is finished since then we can show that H(x, y1) does
not belong to any maximal ideal of OP [y1] (see proposition 6.11) and consequently v is invertible
in OP [y1]. Otherwise we must find G′,H ′ ∈ K[X, Y ] (another representation) such that v =
G′(x, y1)/H ′(x, y1) and H ′(Q) 6= 0 for all Q ∈ B(Q). Observe that

(u)P =
∑

Q∈B(P )

(u)Q ≥ AP = (mP − 1)EP +
∑

Q∈B(P )

AQ

and EP = (x)P . Now we can write

(v)Q = (u)Q − (x(mP−1))Q ≥ AQ for all Q ∈ B(P ).
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Since degAQ < degAP for all Q ∈ B(P ) we have

v ∈ OQ for all Q ∈ B(P ).

Therefore there exist for every point Q ∈ B(P ) three polynomials GQ,HQ, AQ ∈ K[X, Y ] such
that

HQ(Q) 6= 0 and GHQ = GQH + AQC ′(SQ)
.

We set
Ĉ ′

Q := C ′/C ′(SQ) ∈ K[X, Y ].

Since Ĉ ′
Q(Q) 6= 0 and HQ(Q) 6= 0 we can choose αQ ∈ K such that H ′(Q) 6= 0 for all Q ∈ B(Q)

where
H ′ :=

∑
Q∈B(P )

αQĈ ′
QHQ.

We multiply the equation GHQ = GQH +AQC ′(SQ) by αQĈ ′
Q for each Q ∈ B(Q) and sum up. We

obtain
GH ′ = G′H + (

∑
Q∈B(P )

αQAQ)C ′

where
G′ :=

∑
Q∈B(P )

αQĈ ′
QGQ.

Consequently we have

v =
G′(x, y1)
H ′(x, y1)

with H ′(Q) 6= 0 for all Q ∈ B(P ). 2

The Brill-Noether algorithm relies essentially on Max Noether’s Fundamental Theorem which does
not impose any constraint on the irreducibility of the curve C∗.

Theorem 6.13 (Max Noether’s Fundamental Theorem) Let C∗ := {C∗ = 0} a projective
plane curve. Let F,G ∈ K[U, V,W ] be two homogeneous polynomials such that C∗ does not divide
G. Then the following conditions are equivalent:

1. there exist two homogeneous polynomials A,B ∈ K[U, V,W ] such that deg A+deg G = deg B+
deg C∗ = deg F and

F = AG + BC∗.

2. F
P
/G

P ∈ OP∗.

Proof: See [Ful69] on page 120 2

The following theorem gives us an algorithm which computes a basis of the vector space associated
to a divisor.
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Theorem 6.14 Let C∗ := {C∗ = 0} be a projective plane curve, A be its adjoint divisor and D be
a divisor of K(C∗) with deg D < ∞. Let G0 ∈ Sd such that C∗ does not divide G0 and

(G0) ≥ D +A.

Then
L(D) := {G/G0 | G ∈ Sd non-divisible by C∗ and (G) ≥ (G0)−D} ∪ {0}

where G and G0 are the residual images of, respectively, G and G0 in K[C∗] and Sd ⊂ K[U, V, W ]
is the set of homogeneous polynomials of degree d.

Proof: (⊇) : Let G ∈ K[U, V,W ] be a homogeneous polynomial such that deg G = deg G0, C∗ does
not divide G and (G) ≥ (G0)−D. Set z := G/G0. Then

(z) + D = (G)− (G0) + D ≥ 0

so that z ∈ L(D).
(⊆) : Let z ∈ L(D) \ {0}. Then D′ := D + (z) ≥ 0 by the definition of L(D). Since D′ ≡ D
and (G0) ≥ D + A we can apply the theorem 4.34 with R := (G0) − (D + A) ≥ 0 to find a
G′ ∈ K[U, V, W ] such that deg G′ = deg G and

(G′) = D′ +A+ R.

We have
(G′)− (G0) = D′ −D = (z).

Let z′ := G/G0. Then (z/z′) = 0. Since z and z′ have the same zeros and poles we have

z = αz′ := αG′/G0

which proves that z can be written in the above form. 2

6.8 Examples

Consider the curve C∗ determine by the polynomial

>> projectiveCurve;
6 5 4 2 3 3 2 4 4 6

poly(X + X Z + X Z + X Z + X Y + X Y Z + Y , [X, Y, Z], F_2)

defined over

>> groundField;
F_2

>> nops(ListOfSingPts);
2

>> map(ListOfSingPts, printProjPoint);
[[1, 0, 1], [0, 0, 1]]

>> map(ListOfDesingTrees, drawTree);
["UU(L1)..", "UU(L2).."]



6.8. EXAMPLES 87

>> printDivisor(adjointDivisor);
3 3

4 L1 + 4 L2
>> nums := interpolatingForms(adjointDivisor,4);

4 2 2 2
[poly(Y , [X, Y, Z], F_2), poly(X Y + X Y Z, [X, Y, Z], F_2),

4 2 2
poly(X + X Z , [X, Y, Z], F_2)]

>> G0 := nums[1];
4

poly(Y , [X, Y, Z], F_2)
>> interDivG0 := intersectionDivisor(G0);

4 L1 + 4 L2

Since the intersection divisor of (G0) and the adjoint divisor are the same, the denominators can
be chosen as the interpolating forms for the adjoint divisor. We see that the polynomial has three
absolutely irreductibel factors.

>> absFactor(4,L1);
2 2

poly(X + X Z + (X2 + 1) Y , [X, Y, Z], F_8)
>> op(%, 3);

F_8
>> (%)::minpoly;

3 2
poly(X2 + X2 + 1, [X2], IntMod(2))
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Chapter 7

Conclusion

The aim of this diploma thesis has been the implementation of all algorithms necessary to construct
geometric Goppa codes and to determine the absolutely irreducible factors of a bivariate polynomial
in the computer algebra system MuPAD.

In the first part the geometric Goppa codes have been introduced using the language of algebraic
function fields of one variable. It has been shown how the Brill-Noether algorithm can be used for
the construction of geometric Goppa codes provided that we know a plane model of the algebraic
function field. The main difficulty is here that we are working with a curve which may contain
any singularities. Therefore we have used a generalization of the classical Brill-Noether algorithm
to projective plane curves with any singularities. The presentation of the algorithms in a strictly
algebraic manner using the theory of algebraic function fields has facilitated the translation from
theory to implementation. We have shown how to obtain a representation of all places using the
technique of blowing up. It is possible to determine places of any degree, to construct any divisor,
to compute a basis of the vector space associated to any divisor, and to evaluate functions at any
place of degree one. We need all this for the construction of a geometric Goppa code. Moreover,
we can compute the genus and canonical divisors of the function field. Many results presented in
[Sti93] can be verified by computing concrete examples.

The second part treats the absolute factorization of bivariate polynomials. It has been shown
that the Brill-Noether algorithm is also valid for reduced curves. Here the function field of an
absolutely irreducible curve is replaced by the function ring of a reduced curve and the concepts of
algebraic function fields are carried over to function rings of reduced curves. A geometric approach
for the absolute factorization has been described.

Some new proofs concerning the Brill-Noether algorithm have been presented in this diploma
thesis. All the necessary algorithms for the construction of geometric Goppa codes and the absolute
factorization have been implemented by the author in MuPAD. The Brill-Noether algorithm is
defined over an algebraically closed field. It has been shown how an algebraic closure of the ground
field can be simulated by using dynamic extensions. During the computations it is necessary
to construct extension fields. Unfortunately MuPAD does not offer any methods for this. The
necessary methods had to be implemented. An implementation in MAGMA is planned since MAGMA
offers very efficient methods for constructing extension fields and for analyzing error-correcting
codes (see [BCP97]). It would be interesting to study the properties of the codes in dependence on
the choice of the divisors used for the construction.
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